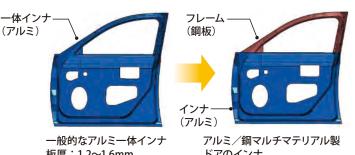
アルミ/鋼 マルチマテリアル製

Aluminum / Steel Multi-Material Door

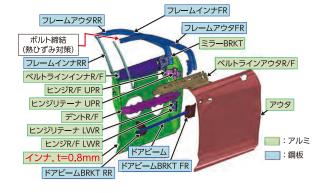
果 効

- サイドドアのコストおよび軽量化コスト低減 (軽量化コスト500円/kg以下、アルミドアに対し軽量化コスト 約60%低減)
- ▶ 鋼板ドアに対する軽量化効果:約7kg/ドア(軽量化率約40%)


ポイント

試作品

アルミインナの薄肉化とサッシュフレームの鋼板化により 低コスト化を実現したマルチマテリアル (MM)製ドア


アルミインナの薄肉化とサッシュフレームの鋼板化により 低コスト化を実現したマルチマテリアル (MM) 製ドア

アルミ/鋼 MM製ドアの部品構成

板厚:1.2~1.6mm 歩留り:約50%

ドアのインナ 板厚: 0.8mm 歩留り: 約70%

アルミ/鋼 MM 製ドアの試作品

(アウタ側)

(インナ側)

KOBELCO

高強度7000系AI合金ビームの つぶし加工技術

Press Technology for Ends of 7000 series Aluminum Alloy Beam

効 果

- 低コスト化(部品点数の削減、溶接等の加工工数の削減)
- 設計自由度の向上(車体デザインへの追従性の向上)

ポイント

1. 課題

高強度7000系アルミ合金は、鉄や6000系合金と比較すると、強度は高いものの成形時に割れやすい。

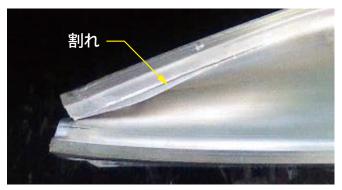


図1 つぶし加工時の割れ例

2. 従来の方法

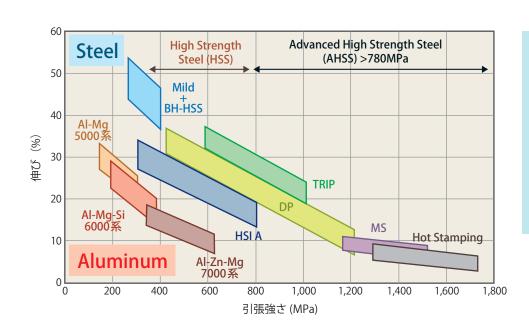
つぶし加工を避け、カット+パッチ溶接に て対応(図2)

図 2 従来製品例

3. 開発品の特長

加工プロセスの中で**熱処** 理を行うことで、つぶし 加工時の割れを防止できるようになった。その結果、レイアウト追随性に優れる部品を提供可能。

図3 つぶし加工を施した7000系アルミ部品


アルミ合金板(自動車パネル、部品用)

Aluminum sheets & coils for automotive panel and parts

効果

- 多様な特性のアルミ合金板を適材適所に活用し軽量化
- ご要望に応じた材料提案

非熱処理型アルミ合金

(1000系, 3000系, 5000系)

- ・比較的成形性に優れる。
- ・合金により多様な強度。

熱処理型アルミ合金 (2000系, 6000系, 7000系)

・時効熱処理により高強度が 得られる。

	A A /E A	弊社 供給	主な 適用部品	調質	機械的性質(代表値)				その他材料特性		
	AA/EA 合金規格				引張強さ MPa	耐力 MPa	伸び %	ベーク後耐力 MPa	成形性	ベークハード性	耐食性
Al-Mg-Si 系 合金 (6000 系 合金)	6022	0	パネル/アウタ	T4	220	125	28	205*	+	++	++
	6016	0	パネル/アウタ	T4	210	105	27	220**	+	+	++
	6014	0	パネル/アウタ	T4	205	105	25	215**	+	+	++
	6111	0	パネル/アウタ	T4	240	120	29	205*	++	++	+
	6061	0	構造部材	Т6	305	280	14	N/A	-	N/A	+
Al-Mg系 合金 (5000系 合金)	5182	0	パネル/インナ	0	275	125	29	N/A	+++	N/A	+
	5022	0	パネル/アウタ	0	280	135	31	N/A	+++	N/A	+
	5154, 5754	0	構造部材	0	225	100	26	N/A	+	N/A	++

AA; The Aluminum Association

N/A; not applicable

※熱処理型合金については、お客様の要望に合せて、ある程度調整可能

陸村 中製鋼所

KOBELCO 特設サイトへ 🗵

^{* 2%}st+170°Cx20min, Typical value at 1.0mm

押出用アルミ開発合金

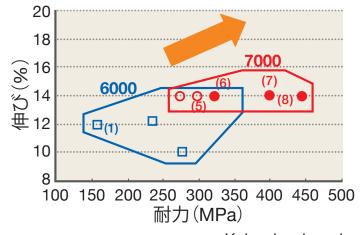
Developed aluminum alloys for extrusion

効果

- 高強度アルミニウム合金による部材の軽量化
- 形状自由度を活かした低コスト化

製品化済 開発完了 開発中

ポイント


■ 高強度自動車構造用アルミニウム押出材 (開発合金)

			調質	機械的	性質(代表			
合金	No.			TS (MPa)	YS (MPa)	EL. (%)	用途	
	1	6063	T5	190	150	12	JIS 合金	
6000 (Al-Mg-Si)	2	6005C	T5	270	225	12		
(3	6061	Т6	295	265	10		
	4	7003	T5	315	265	14	JIS 合金(比較)	
	5	7204	T5	345	285	14		
	6	Z35B	T7	365	310	14	バンパー R/F	
7000 (Al-Zn-Mg)	7	7K55	T7	440	400	14	バンパー R/F	
(Al-Zil-ivig)	8	Z6W	T5	480	435	14	ドアビーム バンパー R/F	
	9	7075	T6	575	510	11	JIS 合金 (比較) (中空押出不可)	

代表値:弊社材料の代表的な性能を説明するためのものであり、保証を意味するものではありません

押出断面の例

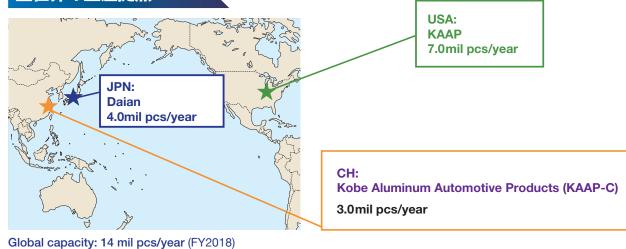
Kobe developedJIS alloys

KOBELCO 特設サイトへ 🗵

アルミ押出・加工品営業部

東京 TEL:03-5739-6453 名古屋 TEL:052-584-6033

サスペンション部品用アルミニウム鍛造品


Aluminum products for automotive

- ■神戸製鋼は日本、欧州、アメリカにおいて主要自動車メーカーに対し 長年に渡る供給実績があります。
- ■日本、北米、中国に製造拠点があります。
- ■最適設計手法を用いて、軽量かつ高強度な部品を開発しています。

主要製品

全世界の生産拠点

松神戸製細所

KOBELCO 特設サイトへ 🗵

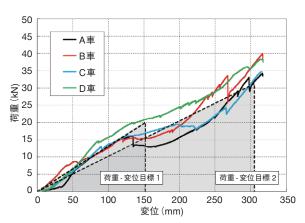
CAEを活用した設計ソリューション

Design solutions by CAE simulation

効 果

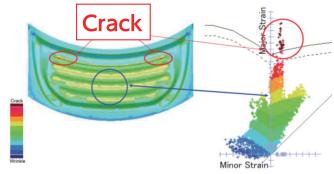
CAE技術を活用し、アルミ素材の特性を活かした 軽量化提案や課題解決に向けた提案をいたします。

ポイント


- ■歩行者保護アルミフードの設計提案
- ■自動車部品の熱変形抑制構造の提案
- ■サイドドア単品の強度評価,ベンチマーク(FMVSS214)

【試験結果】

【CAE結果】



【強度試験結果の比較】

■成形性評価への協力

【試作結果】

【CAE結果】

破断評価事例(アルミフードインナー)

出典:2016 自動車技術会春季大会学術講演会 No.20165288

▶ https://www.kobelco.co.jp/products/automotive-engineering/movie.html (動画:シミュレーション事例)

松神戸製細所

KOBELCO 特設サイトへ 🗵

アルミ板自動車材営業部

東京 TEL:03-5739-5070 名古屋 TEL:052-584-6046