200kgf/mm² 級高強度亜鉛めっき鋼線の開発

隠岐保博*・茨木信彦*・鹿礒正人*・槙井浩一(工博)**

*神戸製鉄所・条鋼技術部 **技術開発本部・材料研究所

Development of 200kgf/mm² Grade High-strength Zinc-galvanized Wire

Yasuhiro Oki · Nobuhiko Ibaraki · Masato Kaiso · Dr Koichi Makii

To improve the strength of zinc-galvanized wire for cables up to the 200kgf/mm² (1960N/mm²) grade, new hypereutectoid steel with additions of Si and Cr was manufactured on a trial basis .This wire maintains its nano-microstructure after being galvanized with zinc. Properties such as ductility, toughness, fatigue and delayed fracture were also tested and met with the requirements for high-tensile-strength zinc galvanized wire for main cables.

まえがき = 長大吊橋に使用される線材製品として, 吊橋 の主ケーブル用亜鉛めっき鋼線がある。吊橋が長期間の 使用に耐えうるために, この主ケーブルには耐食性, 耐 候性が要求される。また長大化実現のために, 主ケーブ ルの軽量化, すなわち高強度化が要求される。海外およ び日本の吊橋には, 長年にわたり引張強さ 160kgf/mm² 級(TS:1568~1764N/mm², 以後 160 キロ級と記述) の亜鉛めっき鋼線が使用されてきた。しかし, 中央径間 1991m という世界最大の吊橋である明石海峡大橋には, 従来の亜鉛めっき鋼線を上回る引張強さ 180kgf/mm²級 (TS:1764~1960N/mm², 以後 180 キロ級と記述)の

第1図 亜鉛めっき鋼線の製造工程

Fig. 1 Manufacturing process of zinc-galvanized wire

第1表 現行亜鉛めっき鋼線の 仕様

 Table 1
 Specification
 of
 zincgalvanized wire

8

高強度鋼線がは	じめて採用され,	主ケーブル重量や主塔
高さの低減,工	朝短縮に寄与した	•0

日本だけでなく世界的にみても,次期長大吊橋には明 石海峡大橋を上回る中央径間を有する超長大橋の構想も あり,さらなる高強度化は必要であると考えられる。

そこで本研究では,引張強さ180キロ級を超える高強 度亜鉛めっき鋼線の試作評価をおこなったので,その結 果について述べる。

1. 亜鉛めっき鋼線の現状

第1図に主ケーブル用亜鉛めっき鋼線の製造工程を 示す。吊橋主ケーブルの架設方法には,亜鉛めっき鋼線 を現場で直接引出すAS工法と,事前に工場で亜鉛めっ き鋼線を束ねてストランドとし,これを現場で引出す PWS工法がある¹⁾⁻³⁾。主ケーブル用亜鉛めっき鋼線は, いずれの工法でもロープのように撚られることなく平行 線として直線のまま束ねて使用される。そのため直線性 が必要となり,この特性を満足させるために一般的な亜 鉛めっき鋼線の製造では実施しない直線加工工程を追加 している。

第1表に主ケーブル用 160 キロ級, 180 キロ級亜鉛め

		160kgf/mm ² Grade HBS G3501	180kgf/mm ² Grade HBS G3508
	С	0.75~0.80	0 80~0 85
	Si	0.12~0.32	0 80~1 00
Chemical	Mn	00.0~03.0	0 2 0 ~ 0 3 0
Composition	Р	0 D25	0 .025
	S	0 D25	0 .025
mass	% Cu	0 20	0.05
	Ni		0 D5
	Cr		0.05
Diamotor	Tolerance	±0.06	± 0 .06
Diameter	Unsoundness	60 0	3Q 0
	Tensile Strength Kgf/mm ² N/mm ²	160 ~ 180 1 568 ~ 1 764	180 ~ 200 1 764 ~ 1 960
Mechanical	Proof Strength Kgf/mm ² N/mm ²	118 1 156	140 1 372
Properties	Elongation %	4	4
	Wrapping Test 8 turns/3 d	Without Fracture	Without Fracture
	Torsion Test turn/100d	14	14
	Coating Weight g/m ²	300	300
	Adhesion Test 2 turns/5 d	Without Crack or Flake	Without Crack or Flake
Galvanizing	Increased Diameter mm	0.12	0.12
Properties	Appearance	Smooth without Flake or Crack and Free from Harmful Foreign Material through Entire Length	Smooth without Flake or Crack and Free from Harmful Foreign Material through Entire Length
Straightening	Free Coil Diameter m	4	4
Properties	Free Coil Lift cm	15	15

第2表 亜鉛めっき鋼線の製造実績

Table 2 Mechanical properties of zinc-galvanized

wire

				160kgf/mm ² Grade (Minami Bisan-Seto Bridge)	180kgf/mm ² Grade (Akasi Kaikyo Bridge)
Diamatar		Diameter		5.130	5 243
Diameter	mm	Unsoundness		0 D19	0 D36
		Tensile Strength	kgf/mm ² N/mm ²	168 <i>.</i> 7 1 653	187 <i>.</i> 7 1 839
Mechanical	Mechanical	Proof Strength	kgf/mm ² N/mm ²	136 <i>5</i> 1 338	152 <i>5</i> 1 495
Properties		Elongation	%	6 .63	6 51
		Wrapping Test	8 turns/3 d	Good	Good
		Torsion Test	turn/100 d	23 A	26 D
		Coating Weight	g/m²	343 2	365 3
Plating		Adhesion Test	2 turns/5 d	Good	Good
Properties		Increased Diameter mm		0 097	0.106
		Appearance		Good	Good
Straightening		Free Coil Diameter	m	35 A	39 D
Properties		Free Coil Lift	cm	۵٥	۵٥

第3表 現行亜鉛めっき鋼線の工程別強度比較

 Table 3
 Tensile strength change of wire

	Chemical	Composition	mass%	TS k	nm²)	
TS Grade	С	Si	Mn	LP Wire	Drawn Wire	Zinc - galva- nized Wire
160kgf/mm ² Grade	0.77	0 25	0.75	123 (1 205)	185 (1813)	167 (1637)
180kgf/mm ² Grade	0 82	0 90	0.75	133 (1 303)	195 (1911)	187 (1833)
TS				10 (98)	10 (98)	20 (196)

っき鋼線の仕様を示す。引張強さを 20kgf/mm²(約 200 N/mm²)向上させるために,鋼の化学成分の中で,C とSiを増量添加している。180 キロ級亜鉛めっき鋼線の製造実績を,160 キロ級¹⁾との比較で第 2 表に示す。 引張強さが約 20kgf/mm²(約 200N/mm²)向上してい るにもかかわらず,伸びやねじりなどのその他の特性は 劣化せず,靱性および延性に富む高強度亜鉛めっき鋼線 を製造できたことがわかる。

2. 亜鉛めっき鋼線の高強度化に対する考え方

亜鉛めっき鋼線を高強度化すると靱性および延性が劣 化する傾向にある。靱性および延性を確保しつつ亜鉛め っき鋼線の高強度化をはかる方策として,以下の4点が 上げられる。

鉛パテンティング材(以後 LP 材と記述)の強度向上 伸線加工率の増加

伸線中の歪み時効抑制

亜鉛めっき処理での強度低下防止

180 キロ級亜鉛めっき鋼線では 160 キロ級鋼線にくら べて,

LP 材の強度向上のために C Si 添加量を増加,

伸線加工率の増加は靱性および延性劣化が懸念される ために採用せず,

歪み時効抑制のために冷却伸線技術の採用,

めっきによる強度低下防止のために Si 添加量の増加, などを実施することによって高強度化を達成した⁴⁾。

第3表に160キロ級と180キロ級鋼線の各工程にお ける強度変化を示す。180キロ級亜鉛めっき鋼線は160 キロ級鋼線にくらべて,LP材で10kgf/mm²(約100N/ mm²)の強度上昇が達成されており,同時に伸線材でも 同レベルの強度上昇がえられている。

亜鉛めっきによる強度低下防止に関しては,伸線材と 亜鉛めっき鋼線との強度を比較すると,160キロ級鋼線 では 20kgf/mm²(約 200N/mm²)低下であるのに対し, 180 キロ級では 10kgf/mm²(約 100N/mm²)低下にとど まった。これによって亜鉛めっき鋼線で 20kgf/mm²(約 200N/mm²)の強度上昇が実現できている。

このときの Si 添加による亜鉛めっき時の強度低下抑 制メカニズムについては,高橋らによってパーライト中 のフェライト/セメンタイト界面に Si 濃化層が生成し, その結果セメンタイトの崩壊を抑制するためと報告され ている⁵⁾⁶⁾。著者らは,さらに微細なナノオーダーレベ ルでの組織観察をおこない,Si の効果をより明確にし た^{7)~9)}。すなわち,亜鉛めっき処理時に鋼線温度は400

以上まで上昇する。この温度上昇によって鋼線中のラ メラセメンタイトがナノサイズに粒状化し,さらに粗大 化することによって強度と同時に延性も低下する。Si はラメラセメンタイト表面に濃化して存在しており,温 度上昇によるラメラセメンタイトのナノ粒子の粗大化を 抑制することによって,強度低下を防止しかつ高延性を 保つ働きをする。

以上のような亜鉛めっき鋼線高強度化のための方策を ふまえ,180キロ級を超える200キロ級亜鉛めっき鋼線 を試作するために,成分的に以下の2点,

LP 材強度向上のために C Si 増量添加,Cr 添加¹⁰⁰, 亜鉛めっき時の強度低下をさらに抑制するために Si を増量添加,

を考慮して亜鉛めっき鋼線の試作と特性評価をおこなっ た。

3.200 キロ級高強度亜鉛めっき鋼線の試作と 特性評価

200 キロ級亜鉛めっき鋼線の目標値を第4表に示す。 引張強さの下限を200kgf/mm²(1960N/mm²)として 範囲を従来と同様に20kgf/mm²(196N/mm²)とした。 その他の特性は180 キロ級と同等とした。その中で,と

第4表 200 キロ級亜鉛めっき鋼線の目標値

Table 4	Target value of 200kgf/mm ² grade										Target Value
zinc-galvanized wire				Ten	sile Stre	ngth		k	gf/mm ² N/mm ²		200 ~ 220 1960 ~ 2156
		Mechanical Properties		Proof Strength			kgf/mm² N/mm²				156 1 523
				Elongation				%			4
				Wrapping Test			8 turns/3 d		Without Fracture		
			Torsion Test turn/1			n/100 d	14				
	Plating Properties		Coating Weight			g/m²		300			
			Adhesion Test				2 turns/5 d		Without Crack or Flake		
			Increased Diameter				mm		0.12		
第 5表	200 キロ級鋼線の化学成分と初		Chemical Composition			mass	%	Initial Dia	meter	Reduction of	
T-11- 5	期線径,伸線加工率	Mark	С	Si	Mn	Р	S	Cr	n	nm	Area %
Table 5	mm ² grade wire initial diameter	Wire A	0.87	1 21	0.73	0 . 006	0.004	-	12 🕯)	83
	and reduction of area in drawn	Wire B	0 92	1 25	0 50	0 005	0 .001	0 20	11 🕻)	80
		Wire C	0 92	1 25	0 50	0 .005	0 .001	0 20	12 ()	83
	-	Wire D	0 95	1 44	0 51	0.007	0 . 006	-	13 🕯)	86

第6表 200キロ級亜鉛めっき鋼線の試作結果

 Table 6
 Mechanical properties and galvanizing properties of 200kgf/mm² grade zinc-galvanized wire

			Wire A	Wire B	Wire C	Wire D
	Tensile Strength Kgf/mm ² N/mm ²		202 1 980	207 2 029	214 2 097	223 2 185
Mechanical	Proof Strength	kgf/mm ² N/mm ²	179 1 754	176 1 725	189 1 852	198 1 940
Properties	Elongation	%	59	6 A	6.1	5.2
	Wrapping Test	8 turns/3 d	Good	Good	Good	Good
	Torsion Test	turn/100 d	23 No Delamination	34 No Delamination	31 No Delamination	12 Delamination
Plating	Coating Weight	g/m²	382	340	376	320
Fidling	Adhesion Test	2 turns/5 d	Good	Good	Good	Good
Properties	Increased Diame	ter mm	0.11	0.10	eQ 0	0 .10

第7表 遅れ破壊試験条件

 Table 7
 Conditions and results of delayed fracture test

	160kgf/mm ² Grade Wire	180kgf/mm ² Grade Wire	200kgf/mm ² Grade Wire				
Solution Tested	0 .1 N H ₂ SO ₄						
Electric Current Density	10 mmA/cm ²						
Specimen Length	100 mm						
/TS	3a 0						
Applied Stress	1 035N/mm ² 1 164N/mm ² 1 294N/mm ²						
Fracture Time	>100h >100h >100h						

くに耐力は 180 キロ級の目標値である 140kgf/mm² (1 372N/mm²)に,引張強さ向上率(200/180 = 1 .11)を 乗じた値(140×1 .11=156kgf/mm², 1 523N/mm²)を目標 とした。

この強度範囲を目標に,4種類の線径5mmの亜鉛め っき鋼線を試作して特性評価をおこなった。試作した鋼 線の化学成分と初期線径,伸線加工率を第5表に示す。 200~220kgf/mm²(1960~2156N/mm²)の範囲で種々 の強度をえるために、化学成分と伸線加工率を調整した。 えられた亜鉛めっき鋼線の特性を第6表に示す。その 結果,引張強さが200キロ級鋼線の目標下限レベルの 202kgf/mm²(1980N/mm²)を有するWire Aから,目 標上限レベルを超えた223kgf/mm²(2185N/mm²)を 有するWire Dまで,4種類の亜鉛めっき鋼線がえられ た。その中でWire Dのみがねじり試験において縦割れ が発生している。ただし,その他の特性についてはすべ ての鋼線で満足していた。

亜鉛めっき鋼線の高強度化によって劣化が懸念される 特性として疲労と遅れ破壊が挙げられる。そこで,第6 表に示した4種の強度レベルを有する200キロ級亜鉛め

200kgf/mm² Grade

第2図 部分片振り引張疲労試験結果

Fig. 2 Results of partially fluctuating tensile fatigue test

っき鋼線と,比較のために160キロ級と180キロ級の亜 鉛めっき鋼線をもちいて疲労、遅れ破壊特性を評価した。 試験条件については,森山の報告¹¹⁾に基づいた。

第2図に疲労試験結果を示す。ここでは,部分片振 り疲労試験における疲労限応力を疲労強度とした。亜鉛 めっき鋼線の強度の上昇とともに疲労強度が向上してい ることがわかる。

 160kgf/mm² Grade Zinc-galvanized Wire (Plain Carbon Steel)
 180kgf/mm² Grade Zinc-galvanized Wire (Si Added Steel)
 200kgf/mm² Grade Zinc-galvanized Wire (Si and Cr Added Steel)

 Image: Comparison of the steel of

- 写真1
 各種亜鉛めっき鋼線

 中のセメンタイトの

 TEM 観察結果
- Photo 1 TEM images of electrolytically extracted cementite

第7表に遅れ破壊試験条件と結果を示す。強度レベ ルに対する負荷応力の比(負荷荷重比: /TS)は0.66 を採用した。明石海峡大橋の主ケーブルにおける安全係 数は22であり¹²⁾,供用中に生じる負荷荷重比は0.45 (安全係数の逆数)であるため,負荷荷重比0.66は実際 の使用条件0.45よりも大きく,実験条件としては十分 厳しいと判断したため採用した。試験の結果,すべての 鋼線は100時間で破断が生じず,強度レベルによる遅れ 破壊特性の差は認められなかった。

試作した 200 キロ級亜鉛めっき鋼線では,目標上限強 度を超えた Wire D でねじり試験において縦割れが発生 したこと以外は,180 キロ級鋼線とほぼ同等の特性を有 することがわかった。したがって,主ケーブル用として 使用できる特性を有した 200 キロ級亜鉛めっき鋼線が製 造できる可能性が高いと考えられる。

以上のように亜鉛めっき鋼線の高強度化を, 靱性およ び延性を劣化させることなく達成することができた。亜 鉛めっき処理時の Si 添加によるパーライト中のナノセ メンタイトの粗大化抑制効果を確認するために, 鋼線を 電解抽出することによってえられたラメラセメンタイト をもちいて TEM 観察をおこない⁸⁾, その内部構造を観 察した。その結果を写真1に示す。粒状に見えるのが, 亜鉛めっき前には板状であったセメンタイトである。160 キロ級にくらべて Si を増量添加した 180 キロ級のほう が, さらに Si を増量添加して Cr も添加した 200 キロ級 のほうが粒状セメンタイトのサイズが小さいことがわか る。したがって亜鉛めっき鋼線への Si 増量添加, Cr 添 加によるセメンタイトの粒状化抑制によって,亜鉛めっ き鋼線の高強度化が達成できていることを確認できた。

100nm

むすび=明石海峡大橋の主ケーブル用に開発され,世界 に先駆けて実用化された180キロ級亜鉛めっき鋼線を超 える200キロ級亜鉛めっき鋼線を試作した。鋼線の高強 度化によって劣化が懸念される疲労特性と遅れ破壊特性 についても,今回の試作では顕著な劣化は認められなか った。その結果,200キロ級亜鉛めっき鋼線を製造でき る可能性があることがわかった。

この高強度亜鉛めっき鋼線によって,明石海峡大橋を 超える長大吊橋の実現や,使用鋼材の低減による吊橋製 造費用の削減が期待できる。

参考文献

- 1) 光島辺雄ほか: R&D 神戸製鋼技報, Vol.38, No.1 (1988) p.5.
- 2) 角岡正晉ほか: R&D 神戸製鋼技報, Vol.38, No.1(1988), p.8.
- 3) 三田村武ほか: R&D 神戸製鋼技報, Vol.38, No.1 (1988), p.12.
- 4) 池田辰雄ほか: R&D 神戸製鋼技報, Vol.38 No.1 (1988), p.23.
- 5) 高橋稔彦ほか: 材料とプロセス, Vol.5 No.3 (1992), p.881.
- 6) 樽井敏三: "JIM Seminar ナノ・メゾ組織制御と高機能材 料の開発"金属学会,(1995), p.29.
- 7) **鹿礒正人ほか:材料とプロセス**, Vol.7 No.6(1994), p.1804.
- 8) **槙井浩一ほか:材料とプロセス**, Vol.8 No.3 (1995), p.663.
- 9) **槙井浩一ほか:鉄と鋼**, Vol.83 No.8 (1997), p.514.
- 10) 高橋稔彦:金属, Vol.66, No.1 (1996), p.19.
- 11) 森山 彰:本四技報, Vol.13 No.50 (1989), p.10.
- 12) 本州四国連絡橋公団:「上部構造設計基準·同解説」(1989).