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A system has been developed for automatic MAG welding 
with ceramic backing. This system comprises a camera 
to capture the images of the molten pool for recognizing 
feature points to control the torch. A regression-based 
deep convolutional neural network (DCNN), which 
outputs continuous values from image inputs, was used 
to recognize feature points such as arc center and the 
leading end of the molten pool. This has enabled the 
accurate recognition of the distance from the arc center to 
the leading end of the molten pool, as well as the width of 
the molten pool, with an average error of 0.44 mm or less. 
The formation of a proper back bead has been confirmed 
in a welding experiment on a test piece with a tapered gap 
(from 3 to 10 mm).

Introduction

 In the field of production, automatic welding 
technology using robots has become indispensable 
in recent years to improve productivity to strengthen 
cost competitiveness and to compensate for the 
shortage of welders due to the aging of skilled 
welding technicians. However, there are many 
welding tasks that are difficult to automate due 
to the restrictions of apparatus and skills; these 
tasks still rely on skilled welding technicians. MAG 
penetration welding with ceramic backing material 
is one such task.
 MAG welding is a type of gas shield arc-welding 
method and involves high electric current density 
to allow a large electric current to pass through thin 
wires. This makes it possible to deeply melt the 
welded portion to increase the strength. The ceramic 
backing material, if used, shields the back side and 
holds the weld bead, which results in the formation 
of a proper back bead to stably ensure high strength 
of the welded portion. To form a proper back bead 
is referred to as "To form a penetration bead." This 
requires controlling welding while watching the 
status of the molten pool and the arc, which can only 
be dealt with by skilled welding technicians and has 
not hitherto been automated.
 Recently , in the field of general image 
recognition, a technique called "deep learning" has 
enabled the recognition of humans and objects, as 
well as the estimation of their positions, with high 

accuracy. This deep learning technology was applied 
to MAG penetration welding with ceramic backing 
material for automation, as described in this paper.

1.	 MAG penetration welding with ceramic backing 	
	 material

 This paper focuses on butt welding with a V 
groove that has a gap varying from 3 to 10 mm, to 
which a ceramic backing plate is attached (Fig. 1). 
During the welding of the first layer, the state of 
the molten pool changes, depending on-among 
other factors-fluctuations in the gap width and in 
the groove angle, and the mounting condition of 
the backing material. Hence, the existing robots of 
playback systems encounter arc interruptions and/or 
joint penetration failures, and they often are unable 
to yield proper back beads. In order to form a sound 
back bead, it is necessary to properly maintain the 
formation of the molten pool and the state of the 
arc. To this end, parameters such as the electric 
current, voltage, wire feed rate, and torch/electrode 
manipulation must be sensed and controlled in real 
time. In this development, the following control 
policy has been laid down for stable welding:
 (1) The torch speed is controlled so as to keep the 

arc near the leading end of the molten pool. 
 (2)  Left-right control is performed to hold the 

torch in the center of the gap width to prevent 
the weld line from deviating.

 (3)  When the gap width exceeds a certain value, 
weaving is initiated in accordance with the 
gap width.

 In order to realize the above control, the 
coordinates of the leading end of the molten pool, 
arc center, etc., (feature points) were extracted from 

Fig. 1	 MAG penetration welding with ceramic backing 
material
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the camera images capturing the state of welding.

2.	 Overall system configuration

 The overall configuration of the system is shown 
in Fig. 2. The camera is disposed so as to capture 
the arc and molten pool from a position diagonally 
forward of the torch. The images are imported into 
a PC at the rate of 50 fps, and the feature points of 
the image are calculated every 20 ms. The image 
feature quantity, however, varies randomly for each 
image; hence, the past 20 images are averaged to 
calculate the average feature quantity of the images 
to determine the amount of control correction (for 
the speed command, torch left-right command, and 
weaving width command). The amount of control 
correction is sent to the robot controller every 
200 ms for the welding motion of the robot. Since 
the calculation of the image feature quantity is based 
on the average image feature quantity of the last 20 
images captured every 20 ms, the amount of control 
correction for every 200 ms comes to a moving 
average value of 400 ms.

3.	 Feature point detection of molten pool based on 	
	 deep learning

 The conventional approach to extracting the 
leading end of the molten pool, and other 
features, by image processing generally involved 
human engagement in combining image feature 
quantities such as edge and labeling to construct 
the extraction logic. The shapes and appearances, 
however, change with alterations in the gap width 
and welding conditions, even for joints having an 
identical shape; and each time, human engagement 
has been necessary to make additional modifications 
to the image processing logic. Hence a decision 
has been made to use the regression-based Deep 
Convolutional Neural Network (hereinafter referred 

to as "DCNN") in extracting feature points such as 
the positions of the leading end of the molten pool 
and of the arc center.1), 2) The DCNN has been used 
for the estimation of coordinates for, e.g., facial 
organ detection and human posture estimation and 
has achieved high recognition accuracy.

3.1		 Regression-based DCNN

 The process flow is shown in Fig. 3. The 
network consists of a grayscale-image entry, four 
each of convolution layers, batch normalization 
layers and pooling layers, followed by three fully-
connected layers. As shown in Fig. 4, the final fully-
connected layer outputs values with a total of 10 
points, including the coordinate values of the arc 
center, wire tip, left & right end points of the molten 
pool (indicated as "edge of pool lead (X,Y)" in the 
figure), and left & right ends of the molten pool 
(indicated as "edge of pool (X)", etc., in the figure). 
In the convolution layer, convolution calculation is 
carried out with the weight for a filter size of N×N 
to generate the convoluted value, u. The size of 

Fig. 2  System Configuration

Fig. 3	 Regression-based Deep Convolutional Neural 
Network

Fig. 4  Feature points of molten pool
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the filter used this time is 3×3. Next, an activation 
function is applied to the value, u. 
 A sigmoid function, hyperbolic tangent function, 
or a rectified linear unit (ReLU) is generally used for 
the activation function. The present system employs 
the ReLU for the activation function. The ReLU is 
a function that returns 0 when the input value of u 
is negative and returns the value of u as-is when it 
is positive. In the convolution layer and the batch 
normalization layer which follows the activation 
function, normalization is performed so that each 
element of the feature map of a mini batch unit, 
entered upon learning, has an average of 0 and 
distribution of 1.3) This reduces the influence of the 
spots with high brightness values, in particular the 
arc light, so that the output values can be obtained 
taking into account the molten pool and welding 
target plates with relatively low brightness values. 
In the pooling layer, processing is performed to 
shrink the feature map that has passed through the 
batch normalization layer. The pooling techniques 
include an average value pooling and a maximum 
value pooling. The present development adopts 
the maximum value pooling of 2×2 size, which is 
commonly used for general object recognition. In 
the fully-connected layer, the input feature map 
is transformed to one dimension to generate the 
input value to the next fully-connected layer. In the 
fully-connected layers, a technique for suppressing 
overlearning, called dropout,4) is adopted, in 
which the probability of dropout is set to p = 0.5. 
The ten output values of this fully-connected layer 
correspond to the ten feature points to be forecasted.

3.2		 Learning data and data expansion

 Learning data was inputted for the molten pool 
image of welding, taken in advance, while focusing 
on the coordinate values, visually determined, of 
the arc center, wire tip, left & right end points of 
the molten pool, and left & right ends of the molten 
pool (these coordinate values are hereinafter referred 
to as "feature points"). These learning data were 
inputted from 2,400 images of welding performed 12 
times under various conditions.
 In deep learning, high forecasting accuracy 
can be obtained for learning data; however, the 
forecast accuracy may decline for non-learning test 
data. One of the factors that cause this decline in 
accuracy is the difference in appearance between 
learning data and test data. For example, there may 
be a case where the misalignment of the camera 
or the setting position of the recognition target 
causes a difference between the learning data and 
test data in the position of the recognition target 

in an image. There may be another case where the 
difference in the distance between the camera and 
the recognition target causes a difference in the size 
of the recognition target in an image.
 In order to suppress the decline of forecast 
accuracy due to this factor, there is a method of 
collecting a sufficient amount of data with different 
appearance and adding it to the learning data. 
However, this requires a number of experiments 
and human designation of the positions of feature 
points for all the images captured. Hence, data 
expansion was performed to increase the accuracy 
of recognition based on limited learning data.5) The 
data expansion is a technique of providing learning 
data with the image changes, such as parallel shift, 
horizontal/vertical inversion, and scaling, and 
adding the changes to the learning data. This time, 
the data expansion was carried out by randomly 
adding a mirror surface inversion to the horizontal 
direction, parallel shifts by 5, 10, 15, 20 pixels in 8 
directions of every 45° angle, and scaling from 0.8 to 
1.2 times in each longitudinal/lateral direction at an 
increment of 0.1. On the basis of the above, learning 
was carried out on 12,000 data, including the original 
2,400 learning data and 9,600 expanded data.

4.	 Evaluation experiment

 In order to verify the validity of the present 
system, the errors in the values forecasted by the 
regression-based DCNN were evaluated while 
carrying out welding experiments.

4.1		 Error evaluation of forecast values

 In order to evaluate the errors of the values 
forecasted by the regression-based DCNN, a 
comparison was made with feature points extracted 
by the conventional image processing technique. 
As shown in Fig. 5, on the basis of the conventional 
image processing technique, the left & right lower 
edges, which constitute the contour of the molten 
pool, were detected and fitted into curves to identify 
their intersections with the leading edge, the 
intersections referred to as the left & right end points 
(indicated as "edge of pool lead") of the molten pool.
 For test data, apart from learning data, the 
distance, Lead Y, from the arc center to the leading 
end of the molten pool, and the distance, Lead W, 
between the left & right ends of the molten pool (Fig. 
6) were calculated to compare the techniques. These, 
Lead Y and Lead W, are important values used to 
control welding.
 Fig. 7 compares the average errors, with respect 
to the coordinates visually selected from the images 
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of the molten pool, between the coordinates of the 
feature points extracted by regression-based DCNN, 
as well as with those extracted by conventional 
image processing. For Lead W, the same level of 
errors was confirmed between the conventional 
image processing and regression-based DCNN, 
while, for Lead Y, an improvement of 0.3 mm was 
confirmed in comparison with the conventional 
image processing. This improvement is attributable 
to the fact that the conventional image processing 
erroneously recognizes spatter as the leading end of 
the molten pool, while regression-based DCNN was 
able to accurately recognize the leading end of the 
molten pool.

4.2		 Welding experiment

 To verify the validity of the present system, a 
welding experiment was conducted, in which a test 
piece with a tapered gap having a varying groove 
width (3→10 mm) was disposed at an offset of 
10 mm to the right with respect to the final teaching 
point of welding. The welding was carried out 
using flux-cored wire (FCW) under the conditions 
of electric current 200 A, voltage 25 V, and CO2 gas. 
The shape of the test piece is shown in Fig. 8, and 
the system configuration is shown in Fig. 2. The 
images of the state of welding were captured by the 
camera attached to the torch tip, while the feature 
points were extracted by PC processing to calculate 
Lead W and Lead Y, and these values were used as 
the basis for determining the control variables such 
as welding speed. Fig. 9 shows the change in the 
welding speed, Lead W, and Lead Y from welding 
start to finish, and Fig.10 shows the back bead. As 
shown in Fig. 8, the distance, Lead Y, from the arc 
center to the leading end of the molten pool is kept 
at a constant value. The distance, Lead W, between 
the left & right end points of the molten pool has 
the same value as the gap width of the workpiece, 
showing that this gradually increasing width is 
recognized successfully. As the gap width increases, 
the pooling of molten metal slows down and the 
welding speed must be slowed down accordingly. 

Fig. 5  Edge detection by curve fitting

Fig. 7  Average error in coordinates of feature points

Fig. 6  Feature points Lead Y and Lead W

Fig. 9  Changes of control parameters

Fig.10  Experimental result (appearance of back bead)

Fig. 8  Test piece
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It is shown also that the welding speed is gradually 
slowed down to keep Lead Y constant. Fig.10 verifies 
that a proper back bead is formed regardless of 
whether there is a misalignment to the right or left, 
or a gap fluctuation.

Conclusions

 An elemental technology for automation was 
developed for "MAG penetration welding with 
ceramic backing material." Automatic welding 
was conducted to control the torch on the basis of 
the state recognition achieved by deep learning 
of the molten pool images captured by a camera. 
As a result, it has been confirmed that a proper 
back bead can be formed, although still in a limited 

environment. In the future, we will expand the 
target joints for deep learning and improve the 
versatility of molten pool recognition.
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