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Abstract

Attention is being paid to attempts at predicting the 
degradation and life of lithium-ion batteries (LIBs). 
This paper focuses on the examination conducted on 
the features, advantages, disadvantages, etc., of a data-
driven prediction model that combines feature extraction 
and regression by deep learning. Also described is 
a physics-based model that predicts the degradation 
progress by electrochemical reaction formula and 
the like. As a result, it was found that in the physics-
based model, the prediction accuracy is high when the 
degradation phenomena are relatively straightforward, 
but its application is difficult when the phenomena are 
complicated or unknown. On the other hand, the data-
driven modeling can be done even when the phenomena 
are not sufficiently clear and is considered to have a great 
advantage in predicting degradation accurately. Further 
consideration of the constructed model has also turned 
out to be useful for elucidating hidden phenomena.

Introduction

 Lithium-ion batteries (hereinafter referred 
to as "LIBs") are installed in various equipment, 
including information terminals such as notebook 
PCs and smartphones, as well as transport 
machines such as electric cars, aircraft, and artificial 
satellites. Therefore, the technologies for predicting 
the degradation of LIBs have become extremely 
important in evaluating equipment life.
 The degradation prediction methods for LIBs 
are being actively studied, including, in addition to 
the simple rule of thumb (power law, logarithmic 
law), physics-based models (electrochemical models) 
in which hypotheses of degradation phenomena 
are human-made to solve electrochemical reaction 
formulas numerically, and, more recently, data-
driven models for predicting the remaining life 
from charge-discharge cycle data based on machine 
learning. Fig. 1 is a map summarizing these 
approaches, showing "Hypothesis-driven/Data-
driven" on the vertical axis and "Black box/White 
box" on the horizontal axis. In the hypothesis-driven 
approaches, various assumptions (simplification 
or homogenization) are human-made to model 
the phenomena. In contrast, in the "data-driven" 
approaches, models that conform to the measured 
data are established by machine learning. The 

term "black box" refers to a modeling method of 
describing a phenomenon only by the relationship 
between input and output, and "white box" refers 
to a modeling method that takes into account the 
details of the phenomenon (here, electrochemical 
reaction, concentration diffusion, and the like). 
The empirical methods (second quadrant) as 
typified by route rules1) are easy to apply because 
they use simple functions, but their validity must 
always be discussed. Physics-based models2) (first 
quadrant) are rigorous because they assume physical 
phenomena. Still, it is challenging to establish a 
model when the phenomenon itself is complicated or 
if there is an unknown process. 
 Recently, the data-driven approach3) (third 
quadrant) has been attracting attention. In this 
approach, machine learning is proactively applied 
to degradation data under various conditions. Most 
of these attempts, however, are black-box types 
not considering the mechanism. Although they 
show excellent regression/prediction performance, 
feedback on the cell design and operating conditions 
is difficult because degradation factors are often 
hard to estimate.
 KOBELCO Research Institute Inc. has recently 
proposed a white box method that assumes 
degradation phenomena while taking a data-
driven approach (4th quadrant).4) This paper 
briefly describes the conventional physics-based 
model, which models the complex phenomena of 
degradation, and then describes the data-driven 
white box model that predicts degradation from the 
SEM images of electrode cross-sections.

Fig. 1	 Approach map for predicting degradation of Li-ion 
batteries
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1.	 Conventional physics-based model 

 A method (physics-based model) that considers 
various degradation phenomena inside electrodes 
in ordinary or partial differential equations has 
been suggested as a high-precision method of 
predicting LIB degradation behavior.1) Fig. 2 
shows an example of the degradation prediction 
schemes using a physics-based model. First, 
various observations, such as SEM and TEM/EELS, 
are performed to identify critical phenomena in 
battery degradation. In the case of LIBs, the main 
degradation phenomena include passivation films 
(solid electrolyte interfaces, hereinafter referred to 
as "SEIs") deposited on the active material surface, 
structural transition in the surface layer of the 
active material, and inter-particle cracks. Modeling 
methods such as the "simple SEI growth model," 
"phase transition model," and "crack propagation 
model" are suggested, respectively. Next, the 
formula predicting the temporal evolution of the 
physical values is established for the identified 
degradation phenomenon. For example, in the 
case of SEI film growth, the side reaction current is 
usually calculated using Tafel's equation. It is often 
assumed that the growth rate of film thickness is 
proportional to this current. Finally, the physical 
values are reflected and converted into battery 
characteristics (charge-discharge resistance and 
capacity) to predict the subsequent behavior. The 
parameters used for the case (hereinafter referred to 
as "reflection parameters") are determined by fitting 
them to the actual measurement. The fitting includes 
sequential optimization by the least square method 
with regularization term and data assimilation by 
Kalman filter. Fig. 3 shows an example of applying 
the physics-based model to the degradation 
prediction of a Li(Ni1/3Mn1/3Co1/3)O2-graphite system, 
a typical configuration of LIB electrodes. A first-
order reaction formula expresses the coverage 
increase for the structural transition layer of the 
positive electrode active material. Two types of 
negative electrode SEI films (inorganic and organic) 
are assumed, and the linearized Butler-Volmer 
equation is used for the growth rate, in which the 
growth driving force is regarded to be proportional 
to the side reaction overvoltage. In addition, the 
crack growth rate between active material particles 
or at the interface of the current collector foil adopts 
an empirical formula based on the Paris rules.
 Such an approach can be expected to result 
in a highly accurate prediction compared with 
the empirical rule of thumb2) but requires the 
assumptions of degradation factors in advance. 
Therefore, the key is to model the dominant factor 

properly. Especially, modeling itself may be difficult 
if the degradation phenomena are complex or the 
factors are not sufficiently clear.

2.	 Data-driven white box model

 KOBELCO Research Institute Inc. has recently 
developed a new degradation prediction technology. 
This technology comprises extracting statistical 
feature values by deep learning and image analysis 
from the cross-sectional SEM image of each 
degraded state of the electrode and estimating 
their temporal evolution by the Gaussian process 
regression. This technology's significant advantage 
is that the degraded state's feature value is extracted 
and selected from analysis images, which enables 
a highly accurate prediction while estimating the 
objective degradation factors.
 Fig. 4 shows the flow of the analysis. As 
described in the previous section, a data-driven 
model may be established using only the charge-
discharge voltage's cycle/temporal change data. 
However, despite being of the same data-driven 

Fig. 3	 Typical physics-based model in Li (Ni1/3Mn1/3Co1/3) 
O2－graphite system

Fig. 2	 Typical degradation modeling methods using 
physics-based models
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type, the present approach uses SEM images of the 
electrode as the input value. It thus is a white box 
approach expected to enable the feature acquisition 
of degradation phenomena inside the battery. The 
main flow is as follows:
 ① Feature value is extracted by deep learning 

and visualized in the analysis images (here, 
the SEM images of the electrode cross-section) 
of each degraded state to identify the notable 
feature locations in the degradation image. In 
addition, image processing is used to score 
the statistical feature value of degradation 
indicated by these feature locations. As will be 
described later, scoring candidates include the 
area, thickness, and maximum pore diameter 
of the coated and/or cracked regions.

 ② A nonparametric regression without 
prescribing a function form is used to predict 
how these scores change over time.

 ③ An artificial neural network determines the 
reflection parameters that map each score to 
the actual battery capacity degradation value.

2.1		 Acquisition of measurement data

 A battery cell for evaluation (prototype coin 
cell) was created to acquire measurement data for 
machine learning. The electrodes and electrolyte 
were made of ordinary materials as much as 
possible, adopting Li (Ni1/3Co1/3Mn1/3)O2 for the 
positive electrode, SiO-graphite for the negative 
electrode, and 1M LiPF6(EC: DEC= 1：1) for the 
electrolytes. The coin cell had a diameter of 10 mm 
and a capacity of 4.8 mAh.
 Next, after the initial charge-discharge, a 
charge-discharge cycle test was performed under a 
temperature of 25 ℃, an upper limit voltage of 4.0 V, 

a lower limit voltage of 3.0 V, and a charge-discharge 
rate of 1 C to measure the capacity per each cycle. 
In addition, the cross-section of the negative SiO 
electrode in each degraded state was observed by 
SEM. The maximum number of cycles was set to 100.

2.2		 Extraction and selection of feature values from 	
		  FIB-SEM image

 The cross-sectional SEM images of negative 
electrodes in the initial state and degraded state 
(after ten cycles) were trimmed and enlarged to 
50μm squares to establish a degradation state 
classification model using a convolutional neural 
network (hereinafter referred to as "CNN"). The 
CNN feature value extractor was based on VGG16,5) 
having a proven track record in ImageNet 1000 
class classification. The weight of the neural 
network was adjusted independently only for the 
fully connected layer and the previous block. The 
4,096-dimensional feature value vector thus obtained 
was used to carry out classification. As a result, 
learning approximately 50 images yielded excellent 
classification characteristics. These flows are shown 
in Fig. 5. Furthermore, the slope of the loss function 
was backpropagated to the input image to visualize 
the pixels contributing to the classification.6)

 The mask image, thus obtained, indicates high 
reactions in relatively vast pores, precipitation films 
around the active material, and the fine porous 
region (Fig. 6), which leads to an interpretation that 
these are the regions characterizing the degradation. 
It should be noted, however, that the vectors 
representing these degradation characteristics are 
not interpretable as-is and cannot necessarily be 
used for degradation prediction. Therefore, this 
study used U-net,7) a segmentation method based 
on deep learning. This technique has been used to 
perform the regional division for each degraded 

Fig. 4	 Proposed procedure for data-driven and white box 
approaches

Fig. 5	 Flow of feature extraction and classification of FIB-
SEM images using deep learning

KOBELCO TECHNOLOGY REVIEW NO. 40 JAN. 202331



state image to identify the precipitation film and 
porous regions found in the feature locations of the 
cross-sectional SEM image. At this point, annotation 
by a skilled SEM technician was carried out to create 
teacher data. Statistical values on the image such 
as pore area, surface roughness, and average film 
thickness of the active material surface layer were 
calculated and defined as the degradation feature 
values. Here, segmentation was carried out in four 
regions: active material, binder/conductive aid, 
pores, and active material surface layer (Fig. 7).

2.3		 Cycle change of degradation feature values

 In Section 2.2, the degradation behavior of 
battery capacity has been predicted by Gaussian 
process regression with the number of charge-
discharge cycles as the parameter for the temporal 
change of the quantified degradation feature values. 
The Gaussian process regression is one of the 
nonparametric regression methods. It comprises 
probabilistically interpolating between the data 
points by the kernel function, thereby adaptively 
performing regression and prediction from the data 
characteristics without specifying the function shape. 
In the present analysis, the Gaussian kernel given by 
Eq. (1) has been adopted:

 　　　　　　　　　　　　　　 ……………… (1)

wherein x and x’ are data vectors, and θf and θl are 
scaling parameters. 
 Fig. 8 (figures on the left) shows an exemplary 
regression for the change of degradation feature 
values with the cycle. This example deals with the 

1
θl
2（ ）－κSE（x, x’）=θf

2exp ‖x－x’‖2

Fig. 6	 Visualization of feature locations in cross-sectional 
SEM images of initial (left) and degraded (right) 
SiOx electrodes

Fig. 8  Example of regression of cycle change in degradation features

Fig. 7  Segmentation of FIB-SEM images of SiOx using U-net
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cycle changes in the entire area of pores, the average 
area of the active material, the entire area and 
thickness of the surface region of the active material, 
the average pore size, and the number of active 
materials. While the measured battery capacity 
decreased monotonously, each score fluctuated with 
the cycle, exhibiting a complicated behavior. For 
example, the thickness of the active material surface 
layer does not necessarily increase monotonously 
with the cycle. In other words, the conventional 
physics-based model  assumes relat ively 
monotonous temporal changes in physical values, 
but does not necessarily capture the phenomena 
sufficiently.
 The combination of those degradation feature 
values, subjected to regression, is considered to 
correspond with the value of electrode degradation. 
Therefore, the cycle change of each score and the 
measured degradation value (capacity drop) have 
been coordinated with the reflection parameters 
(Fig. 8, center figure). In the present analysis, the 
coordination has been conducted by an artificial 
neural network with each degradation feature value 
as an input and reflection parameter as an output. 
It should be noted that the reflection parameters 
have been assumed to have no dependence on 
the number of cycles. Since the capacity of actual 
measurement limits the number of data points, the 
regression has been performed after interpolating 
the data. Fig. 8 (figure to the right) compares the 
measured capacity retention rate and the capacity 
retention rate determined by the regression of the 
degradation values. The model demonstrates an 
excellent regression.

2.4		 Considerations

 The contribution of each degradation feature 
value has been analyzed from the input layer and 
the coefficient of the middle-class first layer of 
the established neural network. Fig. 9 (a) shows 
the contribution of each factor to the capacity loss 
after each cycle. Higher values are indicated by the 
feature values related to the active material size, 
such as the average area of active material and the 
active material density, and by the pore diameter, 
suggesting their significant contribution. Fig. 9 (b) 
shows the segmentation images of the negative 
electrode cross-section after the initial 10 cycles 
and 100 cycles. As shown, the active material size 
decreases, and the finer pores increase as the cycle 
progress. Thus, the degradation is presumed to be 
mainly due to the pulverization of active material 
and crack propagation, which enables feedback to 
the electrode design.
 As described, this approach uses the SEM images 
of the electrode as input and enables degradation 
prediction for phenomena whose mechanism is 
not sufficiently clear. It is also noteworthy that the 
features related to electrode degradation and the 
main factors have been extracted.
 The present analysis uses the cross-sectional 
SEM images as the only learning data. The model 
is expected to be further enhanced by including 
other information (including XPS and TEM-
EELS). On the other hand, this approach assumes 
no physical phenomenon, making the data quality 
extremely important. The challenge is to secure a 
sufficient quality and amount of data. In addition, 
the relationship between the feature values 
extracted here is nothing more than an inter-phase 

Fig. 9	 Cycle change of parameters reflected in actual measurement (a), and segmented FIB-SEM images at initial cycle, 
after 10 cycles, and after 100 cycles (b)
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relationship, and it is necessary to pay sufficient 
attention to spurious correlation.

Conclusions

 This paper has described the degradation 
prediction technology of lithium-ion batteries and 
introduced a conventional physics-based model and 
a data-driven model using machine learning and 
deep learning, attracting recent attention. The newly 
developed data-driven white box models enable 
the modeling of insufficiently clear phenomena 
and have highly superior degradation prediction 
accuracy. It has been shown that considering an 
established model is also helpful in elucidating 
hidden phenomena. Each of these models has 
its own character, and it is essential to use them 
properly in accordance with the phenomena, 
purpose and findings.
 The plan includes establishing highly accurate 
prediction technology, including extrapolation 
region by utilizing the SINDy method8) that 
estimates the governing equation from data by 
sparse matrix.
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