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Abstract

Kobe Steel has developed its unique decision support 
technology based on Operations Research (OR) to 
manage quality, cost, and delivery (QCD) in complex 
manufacturing processes. In recent years, the scope of 
decision- making in manufacturing has expanded from 
single factories to interconnected networks of companies 
within supply chains, extending to considerations beyond 
QCD, including environmental impact. In such complex 
business ecosystems, the importance of decision support 
technology, or OR, as a foundation for creating new 
value has grown. This paper explains the foundational 
technologies that constitute decision support technology 
and their roles in KOBELCO’s manufacturing processes. 
It also describes the value and possibilities offered by 
decision support technology through solutions developed 
for actual manufacturing facilities.

Introduction

 The steel industry has always been a trailblazer 
in the use of computers in manufacturing.1) 
Kobe Steel in particular began using mainframe 
computers to optimize complex, large-scale steel 
mill operations in the 1970s. Initially, the objective 
was to optimize production planning in terms 
of individual processes such as steelmaking 
operations and docking operations in logistics. 
As processing power improved, computers made 
their way into production planning involving 
interrelated processes, devising plans entailing a 
level of complexity beyond what the human mind 
could process. The ability to simulate changes in 
production and logistics also brought computers into 
the processes of capital expenditure evaluation and 
logistics operation design.
 Kobe Steel provides technology, products, 
and services in a wide range of fields. However, 
we operate on a relatively small scale in terms 
of our individual businesses compared with our 
competitors. Many manufacturing operations 
involve high-mix, mixed-model production, wherein 
a variety of products is manufactured on a limited 
number of production lines. Safeguarding QCD 
(quality, cost, delivery) under complex conditions 
necessitates scrupulous, data-driven decision 
making regarding capital expenditure, logistics, 

and production planning. This drove Kobe Steel to 
develop decision support technology based on the 
company’s operations research (OR) technology in 
line with the group’s business model. 
 Additionally, recent progress in digitalization 
and globalization has made the companies that 
make up supply chains increasingly intertwined, 
and in more complex ways. Against this backdrop 
is a growing desire to share and use data to 
optimize business ecosystems in ways that no 
individual company can achieve alone. Indices 
regarding what constitutes “optimal” have become 
multidimensional, supplementing the conventional 
factors of QCD with metrics for contributions to safe 
and secure manufacturing and a green society.
  Today ’s manufacturing environment is 
complex and varied. Kobe Steel’s decision support 
technology (OR technology) serves as a foundation 
for optimizing manufacturing in this environment 
through collaboration between our company, our 
partners, and our customers. This technology also 
adds value to society by using data to support the 
decision-making needs of various stakeholders. 
 This paper covers Kobe Steel’s fundamental 
technologies that make up the decision support 
technology developed. Examples of this technology 
in use, demonstrating its practical value, are also 
covered alongside its future possibilities.

1.	 Overview of decision support technology (OR 	
	 technology)

 This section provides an overview of our decision 
support technology (OR technology).
 Products go through a multitude of processes 
on their way through a factory. Mathematical 
models define the sequences and constraints of these 
processes in terms of formulas and rulesets. OR 
technology supports decision making by deriving 
optimal production conditions from mathematical 
models, or by predicting and evaluating future 
conditions based on chosen parameters. The former 
is mathematical optimization technology, and the 
latter is simulation technology.2)

1.1		 Mathematical optimization technology

 Mathematical optimization defines a set of 
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decision variables that minimizes or maximizes an 
objective function based on given constraints and the 
search space (domain).
 Linear programming models are one subset of 
mathematical optimization. Such models involve 
continuous variables (e.g., length, quantity), and 
their objective function and constraint equations 
have linear relationships. An example application of 
a linear programming model is that of defining the 
mixing ratios of raw materials (decision variables) 
so as to minimize cost (objective function) while 
adhering to quality specifications (domain). The 
range of applications for linear programming models 
is wide, including product configuration, personnel 
allocation, and inventory planning. Extensive 
research has been conducted to develop algorithms 
that can find optimal solutions within a reasonable 
time.
 In the production planning activities of the 
metal industry, and thus within Kobe Steel, the 
main decision variables such as lot structure and 
processing sequence are discrete values. As such, 
the applicable optimization method is combinatorial 
optimization, which searches for an appropriate 
combination of decision variables. Combinatorial 
optimization generally cannot find the optimal 
solution in a reasonable time, necessitating an 
efficient search method that finds a suboptimal 
combination tailored to the characteristics of the 
problem. True optimization cannot be guaranteed, 
however. Furthermore, real-world operations entail 
constraints related to quality control and production 
equipment that are challenging to describe as 
mathematical models using formulas, even if they 
can be described in rules. 
 In developing mathematical optimization 
technology ,  Kobe Steel  has  constructed 
modeling and search methods coordinated to the 
characteristics of our manufacturing operations, 
such as high-mix, mixed-model production. We have 
combined these methods with methods that express 
constraint judgments and objective functions in a 
virtual operating model, or simulator, yielding an 
approach that is realistic and has high expressive 
power.
 The heat treatment planning process for throws, 
a main component of the built-up type crankshaft 
in Fig. 1,3) involves defining the heat treatment 
timeframe (batch slot) for each heat treatment 
furnace. Combinatorial optimization determines 
the batch slot each throw is allocated to. Batch slot 
allocations and the arrangements in the furnace 
are based on a complex set of considerations. For 
instance, differences in throw size, whether throws 
can be stacked in the furnace, and constraints 

on positioning from a quality perspective are all 
critical factors. A provisional allocation plan for 
batch slots is determined first (top left of the figure). 
A simulator then determines the optimal furnace 
layout that satisfies the constraints (right). The 
weighted sum of heat treatment process deadline 
delays and energy intensities is evaluated as an 
objective function based on these results (bottom 
left). A new combination of throw allocations is 
explored, reinitiating a cycle that iteratively searches 
for the optimal heat treatment plan.

1.2		 Simulation technology

 Simulation technology can be used to predict and 
evaluate changes related to the decision variables of 
a problem. For example, mathematical models can 
predict changes in targets when there are changes to 
equipment, production plans, or staffing, or during 
the establishment of facilities. These results are then 
used to determine the suitability of various change 
proposals. 
 The hypothetical steelmaking plant in 
Fig. 2 serves as an aid in explaining an example 
application of simulation technology.4) This plant has 
charging facilities for moving molten iron from the 
torpedo car to the ladle as well as a desulfurization 

Fig. 2  Layout of steelmaking plant for example study

Fig. 1  Optimization of batch slot combination
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facility (De-S), a dephosphorization facility (De-
P), and a decarbonization facility (De-C). Molten 
iron progresses through the facility in this order, 
the molten iron ladle being transported between 
facilities by crane. 
 The first step in setting up the simulator is to 
describe the operating conditions and processing 
times of each facility as rules, which are then treated 
as decision variables. Rules include the processing 
sequence, the status of the ladle at each facility, 
and constraints on transfer equipment such as 
cranes. An additional factor is that processing time 
is inconsistent. For example, the charging time when 
transferring molten iron to the ladle fluctuates based 
on the equipment, with a time distribution that has 
one peak when supplying the molten iron from 
one torpedo car and another when supplying it 
from two torpedo cars. A simulator based on this 
descriptive model calculates objective variables, 
such as the average tapping interval, a metric of 
productivity. This determines whether a facility’s 
decision variables are achieving targets. If they are 
not, the simulator can analyze alternatives and can 
rank these alternatives by effectiveness.
 There are two ways of applying simulation 
technology. The first is as a computational model, 
in which objective variables are derived from 
decision variables as one element of finding the 
optimal solution. The example in the previous 
section constitutes this type of application. The 
second is as a way of analyzing simulated results 
related to issues such as expanding facilities 
or improving operations to achieve targets. The 
immediately preceding example constitutes this 
type of application. When constructing a large-scale 
facility, it is not possible to determine the solution 
to every challenge in the initial stage of the project. 
However, sharing simulated results based on certain 
assumptions with all stakeholders makes it possible 

to iteratively analyze simulated conditions. This 
supports decision making in designing the operating 
conditions of Kobe Steel ’s built-for-purpose 
production facilities.

2.	 Example applications of decision support 		
	 technology (OR technology)

 This section introduces case studies in which 
decision support technology (OR technology) 
effected change in Kobe Steel’s manufacturing 
processes and business models.

2.1		 Allocation guidance system for steel wire rod 	
		  and bar5)

 In 2017, Kobe Steel consolidated the upstream 
processes of the Kakogawa and Kobe steelworks 
into Kakogawa Works. Alongside the restructuring, 
we introduced an “inventory replenishment” system 
into the process, in which semi-finished goods such 
as billet are first produced at Kakogawa Works, 
then transferred to Kobe Works (Kobe Wire Rod & 
Bar Plant of Kakogawa Works), and then allocated 
to production orders from stock. This operational 
transition entailed a fundamental shift in the nature 
of specialty wire production. Instead of the small-lot 
production of Kobe Works, these products would 
be manufactured in large lots with minimal semi-
finished goods inventory. As such, new production 
management technology was needed. 
 Fig. 3 outlines the allocation guidance system 
and allocation optimization technology developed. 
Billet manufactured at Kakogawa Works (left side 
of the figure) is transferred to Kobe Works (right), 
where it is held as semi-finished goods for later 
allocation to production orders. Billet inventory 
is divided into lots of a few pieces to dozens of 
pieces, delineated not only by steel type, but also by 

Fig. 3  Overview of inventory allocation guidance system
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factors including casting time, weight, composition, 
and surface quality. Each production order has 
specifications related to these conditions, which 
determines which lots can be allocated to which 
orders. Billet is allocated to orders from stock (top 
right), and production planning for subsequent 
billet production is based on the remaining stock 
(bottom left). However, it takes time for the billet to 
be replenished from Kakogawa. As such, allocation 
is an issue of combination optimization, requiring 
fulfillment of current orders with existing inventory 
and maximal ability to respond to future orders with 
remaining inventory (i.e., inventory potential).
 The optimization method of our system uses two 
indices: (1) current-order allocation fraction and 
(2) future-order inventory potential. The system 
combines two search concepts: (1) global search, 
which searches for a combination that prioritizes the 
current-order allocation fraction, and (2) local search, 
which optimizes the results of the global search to 
improve future-order inventory potential. 
 During implementation, we started with a 
global search to find a solution that could handle 
the current order. We then ran a local search to 
find a neighborhood solution that would improve 
inventory potential. The result was a practical 
solution that could be implemented within a 
reasonable time.
 This system made it possible to link the 
economical, high-volume upstream process at 
Kakogawa Works to the small-lot special wire rod 
production of Kobe Works via billet inventory. In 
turn, we can now guarantee the supply of high-
quality special steel customized to individual 
customer needs.

2.2		 Takasago Machinery Plant production and 		
		  logistics management system6)

 Kobe Steel ’s Takasago Machinery Plant 
has around 200 pieces of equipment for running 
high-mix, mixed-model production of made-to-
order products. The plant began experiencing the 
challenge of delays owing to temporary fluctuations 
in demand. In response, we developed iLiss 
(Innovation of Logistics and Intelligent Scheduling 
System), a production and logistics management 
system that achieves stable production by managing 
real-time progress and optimally allocating 
production resources. As shown in Fig. 4, this 
system consists of a scheduling system (iLiss-S, 
left side of the figure) and a logistics management 
system (iLiss-L, right). The scheduling system 
creates short- and long-term production plans (less 
than or greater than one month, respectively). The 
logistics management system issues operating 
instructions to the production floor based on the 
schedule and manages operational performance. 
Following is an explanation of the scheduling 
system’s logic. 
 The scheduling system manages fluctuations 
in workload by first rearranging tasks in the long-
term plan and then creating a short-term plan based 
on the adjustment. The long-term plan allocates 
work to machines and workers based on meeting 
delivery dates. Tasks beyond capacity (overload 
tasks) are extracted as candidates for outsourcing, 
and a contract assignment plan is drawn up with 
the service provider. After decisions regarding 
outsourcing are finalized, the short-term plan 
allocates resources to complete the remaining 
in-house work based on machine and worker 

Fig. 4  Overview of iLiss
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capacities.
 The program’s logic for managing overload tasks 
in the long-term plan is as follows:

(1) Task selection: The task with the smallest 
delivery margin is isolated from the 
unallocated tasks that are related to parts for 
which work has already been completed.

(2) Provisional allocation: The selected task 
is provisionally allocated within the 
constraints of machine and worker capacities. 
Specifically, the earliest available machine 
and the worker with the smallest number of 
available machines are allocated.

(3) Overload task allocation: If the provisionally 
allocated task will be completed before the 
delivery date (assuming standard working 
hours), the plan is confirmed. If the task 
would be completed after the delivery date, 
the overload task is allocated to the machine 
and worker that can meet the latest delivery 
date, disregarding capacity constraints.

(4) Steps 1-3 are repeated until all tasks are 
allocated.

 Managing overload tasks during long-term 
planning has made it possible to coordinate 
decisions regarding outsourcing early in production 
planning. In addition, grasping overall progress and 
efficiently collaborating with outsourcers through 
the logistics management system have made 
it possible to respond to the large fluctuations in 
demand inherent to made-to-order production, and 
to handle high-mix, mixed-model production.

2.3		 Carbon footprint of a product (CFP) 		
		  calculation model

 As part of the world’s growing efforts to achieve 

carbon neutrality, Kobe Steel is researching a 
model for calculating and analyzing the CFP of 
each product in its metal materials business. This 
extension of the product cost management model 
to calculate CO2 emissions goes beyond evaluating 
products based on the conventional metric of QCD 
by determining a product’s future environmental 
burden. 
 Fig. 5 depicts the CFP calculation model Kobe 
Steel is researching. The scope of calculation covers 
everything from production at Kobe Steel to delivery 
to the customer (cradle-to-gate), and specifically 
includes energy consumption, waste management, 
subcontracted processes, and the procurement of 
raw materials, energy, consumables, and auxiliary 
materials.
 Four inputs feed the calculation (left side of the 
figure): 

(1) Energy consumption: energy used by the 
plant (e.g., electricity, LNG, kerosene). 
Calculated by equipment and department.

(2) Purchasing and procurement: raw materials, 
consumables by equipment and department, 
subcontracting by product ,  shipping 
destinations and methods. Categorized and 
then associated with CO2 emissions factors in 
step 4. 

(3) Manufacturing material flow: material 
streams, compositions, recycling, processing 
time and weight for each process based 
on data linked to manufactured products. 
Tabulated by product specifications and 
manufacturing process. 

(4) CO2 emissions factors: coefficient table 
for converting logistics and equipment 
information from Step 1 and Step 2 into 
CO2 emissions values. Publicly available 

Fig. 5  Calculation model of CFP 
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information is used, such as IDEA, developed 
at the National Institute of Advanced 
Industrial Science and Technology.

 The calculation is performed using the inputs 
above and the following procedure (right side of 
the figure). (A) Total CO2 emissions are calculated 
by equipment. (B) Emissions values are allocated 
to each product based on historical consumption. 
(C) These values are combined with CO2 emissions 
values per metal based on material streams to 
calculate CO2 emissions by product. (D) If necessary, 
CO2 emissions are redistributed for consistency 
throughout the operation.
 Using such a model for the data-driven 
calculation of CO2 emissions by product opens far-
reaching possibilities. First, individual companies 
can evaluate equipment, process design, and 
product composition based on CO2 emissions. And 
second, it will be possible to evaluate the entire 
manufacturing process based on data shared 
between companies throughout the supply chain. 
Our company will contribute to the reduction of 
CO2 emissions throughout society as a whole by 
combining this type of computational model with 
decision support technology (OR technology) such 
as optimization and simulation technologies.

Conclusions

 Kobe  Stee l  has  been us ing  dec is ion 
support technology based on OR technology in 
manufacturing for over 40 years. We began with 
simple simulations that optimized basic indicators 
such as the cost of a single process and the rate of 
on-time delivery. Our technology has since evolved 
to handle various indicators for the entire plant, 
with the ability to consider multiple processes and 
involve external stakeholders.

 Historically, it was sufficient to consider only 
one’s own QCD in manufacturing. In recent years, 
however, considering ESG has become non-
negotiable. These increasingly complex issues must 
be addressed not only by us at Kobe Steel but also 
by the entire supply chain, including our partners 
and customers. Decision support technology (OR 
technology) must play a role in resolving these 
challenges.
 Technological advances in ICT related to OR 
technology are underway. These include IoT 
technology that can newly obtain detailed, real-time 
operating status information; quantum computers 
that can quickly solve complex, previously 
unsolvable problems; and blockchain technology 
that enables multiple companies within a supply 
chain to share data.
 In response to these changing circumstances, 
Kobe Steel will combine decision support technology 
(OR technology) with various new technologies to 
tackle increasingly complex and advanced societal 
challenges. Through these efforts, Kobe Steel will 
develop concrete solutions that add new value to 
society via our manufacturing operations.

References

1) Y. Inoue. Journal of The Society of Instrument and Control 
Engineers. 1968, Vol.7, No.2, pp.97-106.

2) S. Morito et al. Operations Research Society of Japan. 1998, 
Vol.43, No.2, pp.81-87.

3) T. Umeda et al. Japan Joint Automatic Control Conference. 
2019, Vol.62, 1 D1-03.

4) T. Iwatani et al. R&D Kobe Steel Engineering Reports. 2018, 
Vol.68, No.2, pp.29-35.

5) T. Shirasaka et al. R&D Kobe Steel Engineering Reports. 
2019, Vol.69, No.2, pp.73-78.

6) R. Izutsu et al. R&D Kobe Steel Engineering Reports. 2018, 
Vol.68, No.2, pp.3-6.

111 KOBELCO TECHNOLOGY REVIEW NO. 42 FEB. 2025


