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Abstract

	 The steel and metal processing industries, which 
demand precision manufacturing in harsh, high-
temperature environments, have a rich history 
of actively exploring advanced model-based control, 
sensing technology, and communication technology. 
In recent years, the rapid progress in information and 
communication technology has enabled the learning of 
extensive performance data and has advanced inference 
capability. This has paved the way for the practical 
implementation of data-driven science, contributing to 
the development of AI systems capable of accumulating 
both physical and operational knowledge and presenting 
it to individuals. As a result, these AI mechanisms are 
now making their way into the manufacturing field. 
This paper delves into the recent and remarkable 
transformations in the use of data-driven science and AI 
application technology at Kobe Steel, shedding light on 
the collaborative relationship that has evolved between 
individuals and AI through these applications.

Introduction

 The steel and metal processing industries, which 
demand precision manufacturing in harsh, high-
temperature environments, have a rich history of 
actively exploring automation in production. Rolling 
process control technology is one area of focus. Kobe 
Steel has been promoting advanced model-based 
control, sensing, and communication technologies 
in manufacturing, as these are necessary controlling 
forming processes.
 Information and communication technology 
(ICT) has made it possible to gather large amounts 
of data. Application of this technology has evolved 
from model-based control to learning-based control. 
As such, it is now possible to incorporate operators’ 
knowledge rather than relying solely on physical 
models.1) Data-driven science enables advanced 
reasoning by learning from large amounts of 
data accumulated in people’s minds. Data-driven 
models are now being applied to areas with a 
paucity of data, such as development and design. 
AI can be defined as a system with mechanisms 
for input, output, and the incorporation of existing 

knowledge into a data-driven scientific model, 
alongside the model itself created as a result of the 
learning process. AI can hence be implemented to 
solve a variety of industrial challenges, supporting 
manufacturing by serving as a mechanism that 
can learn and present rulesets and operational 
knowledge. This paper introduces Kobe Steel’s 
approach to using ICT in industry. Particularly in 
focus are data-driven science and AI application 
technology, which have recently undergone 
remarkable change, and our latest efforts to foster 
the mutual growth of humans and AI.

1. 	Kobe Steel’s vision of data-driven science and 	
	 AI application technology

 Kobe Steel’s spheres of activity include materials 
(e.g., steel, aluminum, copper), machinery (e.g., 
compressors, industrial machinery), and electric 
power. We provide precision on-site manufacturing 
and ensure the dependable supply of products to 
customers’ supply chains. Alongside automation, 
staff knowledge has played an important role in 
all of these areas. Automation to the fullest extent 
practicable is of course important. However, Kobe 
Steel’s objective in developing data-driven science 
and AI application technology in manufacturing is 
to support the mutual growth of humans AI, and 
systems. As depicted in Fig. 1, this objective is met 
not only by developing physical models, but also by 
learning from people’s operational knowledge and 
combining it with modeling technology, thereby 
advancing operations. The concept of mutual growth 
between people and AI has two implications. One 
is that AI will rapidly gain operational knowledge 
as people reveal it, freeing people to engage in 
tasks with higher added value. The second is that, 
although it is believed that AI will not achieve 
humans’ degree of capacity for adaptation and 
creativity for some time, AI will supplement these 
two skills, fostering the mutual growth of people 
and AI. Beyond this collaboration, our solutions 
will continue connecting humans and technology 
and ensuring safety and security in community 
development and manufacturing.

Data driven science and
AI application technology
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2.	 How ICT supports data-driven science and AI 	
	 application technology

 Kobe Steel’s areas of focus regarding ICT have 
shifted in tandem with the field’s development, as 
shown in Table 1.
 Japan played a major role in the global steel 
industry in the 1980s and 1990s. Early digital 
technology was adopted in process control 
technology for the efficient mass production of steel, 
with positive results.2)

 In the 1990s and 2000s, as steel production in 
emerging economies increased, Japan focused on 
efficiently producing and developing many different 
products, including high-grade steel. Differing 
products across industries presented barriers to 
automation and efficiency. As such, manufacturing 
operators became highly skilled by necessity.
 The advent of the internet in the 1990s made it 
possible to amalgamate data previously confined to 
individual computers.3) The increasing capacity of 
data storage media and enhancements in wireless 
communication technology (e.g., widespread use 
of cellphones) in the 2000s and 2010s improved 
the practicability of using large amounts of data to 
automate operations.4), 5) Advances in information 
infrastructure have enabled automation challenges 

to be overcome by modeling production. For 
instance, multivariable model predictive control 
based on operational data has been used to automate 
plants that are difficult to represent via purely 
physical models, such as waste incineration plants.6) 
 Hardware that can acquire data in the adverse 
environments of metals manufacturing presents a 
competitive advantage. The same is true of sensing 
technology, which supports communication between 
people and processes. Sensing technology has 
evolved alongside advances in digital technology, 
such as in the use of wireless sensors7) designed for 
the harsh environment of heat treatment furnaces.8) 
 The 2010s, and particularly the past decade, have 
seen the commoditization of hardware for cloud 
systems and the communication speed, storage 
density, and processing power that support ICT 
infrastructure.9) In turn, demand for products that 
support the use of data in manufacturing has grown, 
as in the case of Kobe Steel’s industrial machinery 
products10) and welding system products.11) Many 
companies including Kobe Steel have shifted their 
competitive focus to big data and data-driven 
science. Kobe Steel began using data-driven science 
techniques such as machine learning and statistical 
modeling, which we have cultivated through process 
control and operations research, to develop AI that 

Fig. 1  Human-AI interaction through various data

Table 1  Changes in ICT application and our manufacturing
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can use the operational knowledge hidden behind 
data and can develop alongside operators.

3.	 AI that combines data-driven science and 		
	 domain expertise

 The expanded application of data-driven 
science has made it possible to incorporate valuable 
information into data-driven models, including 
experiences stored in the human mind and data 
that can be expressed mathematically, such as in the 
form of physical models. AI incorporates domain 
knowledge from scientific processes such as forming 
and heat transfer prediction into data-driven science 
to extract the more effective methodologies people 
reveal. This section clarifies this concept through 
examples of AI application in plant operations and 
materials development. Values measured by sensors 
and data input by humans essentially represent two 
different realities, resulting in a factor of uncertainty. 
Furthermore, because plants operate under a 
variety of conditions, the volume of data collected 
is sometimes insufficient for accurate analysis. 
Kobe Steel has developed technology to bridge the 
gap between actual operations and what is to be 
expected based on the laws of nature. Specifically, 
we use physical models to ensure accuracy and 
data-driven models to meld the human experience 
with the laws of nature, or domain knowledge. 
Fig. 2 exemplifies these concepts. The lower part of 
the figure depicts how each element’s strengths are 
used. While data-driven models incorporate real-
world fluctuations that are difficult to represent in 
physical models, physical models stabilize data that 
were extrapolated rather than learned. The weight 
given to physical versus data-driven models in AI is 
based on the ease of reproducing the knowledge of 
subject-matter experts (SMEs). The resulting model 
yields an output that enables people to understand 

multidimensional data, which they can validate and 
evaluate the integrity of through comparison with 
their own knowledge and experiences.
 A strong example lies in the advanced 
temperature prediction technology we have 
developed for steelmaking. It is based on people’s 
estimation of temperatures based on operating 
experience. We weighted groups of similar 
operational data based on the deviation between 
data collected and temperature prediction values 
from a physical model. In this way, temperature 
predictions were aligned with operator knowledge 
to yield exceptional accuracy.12)

 Materials integration, or materials informatics 
(MI), describes the use of information science in 
materials design. MI uses machine learning to 
predict material properties from a database of 
experimental values. Such techniques open up 
capabilities similar to those made possible by the 
use of data-driven science in plant operations. 
Examples include the prediction of properties that 
are challenging to predict from physical models, 
the development of AI that can determine the 
process conditions necessary to achieve desired 
properties, and the development of multi-scale 
predictive models that link the prediction of 
component performance with the prediction 
of material properties. Unlike plant operational 
data, however, data used in materials development 
are characterized by small volumes and high 
complexity. This is because there are few 
opportunities for experiments per type of material, 
and because experiments have a broad spectrum 
of objectives. The wide variety of experimental 
conditions and types of data make it challenging 
to standardize database structures at the outset. As 
such, this is one of the most difficult fields for the 
application of data-driven science.
 Kobe Steel initiated a solution by developing a 

Fig. 2  Complementary relationship between AI and humans
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database system to link and store data accumulated 
by researchers for various purposes and structure it 
in a manner conducive to MI. The resulting platform, 
DataLab®, aggregates data once maintained only by 
individual researchers. Unlike ordinary databases, 
DataLab®’s core strength is that it does not require 
the strict definition of a structure in advance, making 
it possible for experimental data to handle complex 
relationships such as branching and recombination 
during analysis. In one particular materials 
development project, a machine learning model 
derived from experimental data was used to achieve 
conflicting performance characteristics in welding 
consumables.13) 
 Additive models and Gaussian process 
regression have been used to construct data-
driven models that integrate knowledge of actual 
parameters and data characteristics as mentioned 
above. Experts can account for conditions and 
phenomena for which data do not exist by selecting 
materials proposed by the resulting model. 
This enables efficient progression through the 
prototyping stage and improved performance over 
conventional materials.13)

 Kobe Steel has established a complementary 
relationship between humans and AI through MI. 
These efforts constitute the use of computational 
and data-driven science to achieve new heights 
in information for R&D and design, fields in 
which small and complex datasets are a barrier to 
model development. Moreover, these efforts are 
a foundational element of collaboration between 
humans and AI.

4.	 Mutual understanding between people and AI to 	
	 support next-generation manufacturing

 CCD and CMOS cameras alongside the advent 
of deep learning have dramatically improved 

the usability of data from imaging. Accordingly, 
such technologies are beginning to replace 
sensory evaluation in manufacturing. The models 
with a physical context described to this point 
differ from data-driven scientific models used in 
sensory evaluation on a fundamental level. The 
latter, especially models using deep learning for 
image discrimination, have no strict guidelines, 
have simplistic outputs, and are easily evaluated 
even by non-SMEs because of the abundance of 
tools available. These characteristics yield a broad 
scope of application of such models. The relationship 
between data-driven science and people has recently 
started shifting toward one of cooperation. This is 
observed in the creation of digital art by generative 
AI based on deep learning, in which AI creates art 
based on instructions provided by a person.
 However, the cooperative relationship between 
AI and people is more complex for sensory 
evaluation than it is for the creation of generative 
AI images. Specifically, sensory evaluation requires 
the ability to explain good and bad results as well 
as deviations. This in turn necessitates technology 
that enables people to comprehend or control AI. 
Our focus hence turned to the rapidly growing 
technology of XAI (explainable AI), which cultivates 
a better understanding of AI models.
 Developments in XAI generally have one of 
two objectives: improving the accuracy of models 
with high explainability, or creating technology to 
understand models with low explainability. Kobe 
Steel’s focus is on the latter to support technological 
development in the use of deep learning with low 
explainability to replace sensory evaluation.
 Fig. 3 depicts Kobe Steel’s work in fostering the 
understanding of AI models with low explainability. 
In Case 1, a person checks the direct output 
of the AI and controls the AI’s loss function and 
hyperparameters to make it behave as desired. In 

Fig. 3  How to create highly explainable AI
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Case 2, a person controls the training data and then 
observes how the output changes, based on how an 
XAI algorithm explains the output of the AI model 
developed.
 An example of understanding AI behavior by 
controlling training data through XAI lies in the 
development of image recognition technology 
for welding automation. We created an AI model 
designed to recognize the features of the molten 
pool (the area where the welding torch and base 
metal meet). However, accuracy declined as we 
trained the AI using specific data. To overcome 
this challenge, we developed a technique to 
understand the behavior of deep learning models 
via the following procedure. First, we used XAI 
in conjunction with a deep learning model with 
encoder-decoder architecture, like U-Net, to create 
fixation maps that visualize regions of interest. 
Maps are then ranked by importance based on the 
change in the AI model’s performance as areas of 
each map are sequentially omitted. We used this 
ranking to track how the model’s accuracy changed 
based on which areas of the image were omitted. 
This interactive understanding of which areas the 
model considered important improved the accuracy 
of the model.14) This method resembles the way in 
which people communicate inspection results by 
pointing at images and explaining what to look 
for. Thus, developments in this field progress by 
communicating intention between people and AI via 
data.
 Our construction of an AI model that controls 
omissions serves as an example of AI model 
development in which the loss function is 
controlled directly. Discriminative models of 
deep learning algorithms are supposed to learn to 
improve accuracy when evaluating products as 
conforming or nonconforming based on sensory 
criteria. However, cases such as ours at Kobe Steel 
necessitate certain requirements related to missed 
nonconformances, as a miss will negatively impact 
downstream processes and customers. Both misses 
and over-detection (misidentification of acceptable 
and nonconforming goods) must be limited to a 
certain percentage. This is why Kobe Steel developed 
a method to optimize the loss function by including 
the confidence threshold itself as a hyperparameter 
of the machine learning model. This development 
validated that models can be more accurate when 
given constraints than when adjusted based on 
general accuracy evaluations.15) Although this 
method is still experimental and not yet ready for 
application in complex models, it already has a very 
wide range of applications.
 Expanding the use of data-driven science in 

manufacturing, a human-dependent field, requires 
mutual understanding between people and models 
as well as the embedding of intention in models. 
XAI will continue to develop to suit these needs, 
particularly in industry. Much is left to be learned 
about XAI, and the orientation of its development is 
not yet clear. However, Kobe Steel will keep its focus 
on this technology as an essential means to apply 
data-driven science to manufacturing.

5.	 The future of data-driven science and AI 		
	 application technology

 The ability to collect more types of data and 
the advancement of data-driven science make it 
possible to model human knowledge, phenomena 
that are challenging to verbalize, and concepts that 
are challenging to represent as physical models. 
Kobe Steel has already begun using data-driven 
scientific models to connect various domains. Data-
driven science and AI technologies have expanded 
and evolved to a remarkable degree. Large-scale 
generative AI services have opened the ability 
for laypersons to accomplish what was recently 
possible only for specialized researchers simply 
by feeding data to applications on the internet. 
There is no doubt that the use of AI will continue 
to spread across the industrial sector. As we apply 
AI to conventional process models and MI, we will 
also increase our ability to use data-driven science 
by establishing a foundation for human resource 
development, using data, and sharing knowledge 
and experience regarding the core technologies of 
data-driven science and AI application.

Conclusions

 Goods must now be evaluated beyond their 
inherent characteristics because of new standards in 
areas such as carbon neutrality; data related to raw 
materials and production methods must be part of 
the evaluation. This means it is necessary to link 
goods and information in an exceptionally accurate 
manner. Furthermore, the application data-driven 
science, which is now becoming intertwined with 
humankind, will become even more important in 
manufacturing. Because manufacturing relies on 
people, this sector will face challenges in passing 
on technology owing to the shrinking workforce. 
Additionally, many companies are struggling with a 
lack of experience in the complexities and expansion 
of industrial infrastructure alongside a shortage 
of human resources to use such infrastructure. 
Kobe Steel is focused on supporting mutual growth 
between people and AI in industry, creating new 
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value by combining data with human knowledge. 
Kobe Steel’s technologies support the general 
capabilities of manufacturing and a broad spectrum 
of industrial domains. Our objective in providing 
these developments is to foster a safe, secure, and 
prosperous society for the next 100 years.
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