KOBE STEEL, LTD.

IRON & STEEL BUSINESS

TOKYO HEAD OFFICE 9-12, Kita-Shinagawa 5-chome, Shinagawa-ku, Tokyo 141-8688, Japan OSAKA BRANCH OFFICE Midosuji Mitsui Building, 1-3, Bingomachi 4-chome, Chuo-ku, Osaka, Osaka 541-8536, Japan

Contact us:

Plate Products Sales Department Iron & Steel Business [Tokyo] Tel.81-3-5739-6173 [Osaka] Tel.81-6-6206-6254

For technical support :

Plate Products Marketing & Technical Service Department Iron & Steel Business

[Tokyo] Tel.81-3-5739-6261 [Osaka] Tel.81-6-6206-6612

http://www.kobelco.co.jp 1509100PR-F

In response to recent customer's need, KOBELCO has improved its Abras ion-Resistant steel.

We categorize our products into Standard type, Low temperature toughness type, Excellent weldability type depending on their properties, making it easier to understand.

Kobelco Abrasion-resistant steel (K-TEN AR) series has been extensively applied in construction and industrial machinery for numerous years.

In response to recent customers' need for the plate's formability and hardness uniformity in thickness direction, we have renewed our abrasion-resistant steel lineup.

The new lineup and typical properties are introduced as follows.

■ Kobelco Abrasion-Resistant steel (K-TEN AR) series

Lineup/Thickness range/Specification (May.2015 * 1)

		Thickness*1	Brinell Hardness	Charp	y test ^{**3}
Classification			(HBW) *2	Temp. (°C)	Absorbedenergy (J)
Standard type	K-TEN AR400A	9≦ t ≦50	360~440	_	_
Low temp.	K-TEN AR400LT	9≦t≦50	360~440	-40	≧Ave.27
toughness type	K-TEN AR400LT-HC	9≦t≦40	360~440 ^{**5}	-40	≧Ave.27
Excellent	K-TEN AR320WA	20≦t≦80	300∼*4	_	_
weldability type*4	K-TEN AR360WA	6≦t≦50	340~380**4	_	_

- * 1 Please contact Kobe steel for the latest information including the thickness range and specification not listed in this table.
- ※ 2 Results of brinell hardness test is average of 3 points on surface.
- Test specimen is prepared by removing decarburized layer (around 1mm).
- ※ 3 Charpy test specimen is JIS Z 2242 V-notch transverse to rolling direction. Results is data of 3 specimens and test is performed for steel over 12mm in thickness.
- * 4 Non-uniform hardness in thickness direction is a characteristic of excellent weldability type.
- # 5 Hardness at the core of the plate is superior.

(Guarantee of brinell hardness values at the center of thickness is for additional charge.)

■ Chemical composition characteristics are as below.

- 1) Standard type/400A,
- ② Low temp. toughness type: Alloy contents can be decreased by special heat treatment.
- ③ Excellent weldability type: Alloy contents are restricted at the same level as that of general TS490N/mm² steel, while maintaining the surface hardness.

Chemical composition of each product *1 (mass%)

Classification	Code	С	Si	Mn	Р	S	Elements	Ceq *1
Standard type	andard type AR400A		0.10 ~ 0.70	≦ 1.50	≦ 0.020	≦ 0.010	*2	≤ 0.64
Low temp.	AR400LT	≤ 0.18	0.10 ~ 0.70	≦ 1.50	≦ 0.020	≦ 0.010	*2	≦ 0.64
toughness type	AR400LT-HC	≥ 0.10	0.10 - 0.70					
Excellent	AR320WA	≦ 0.18	≤ 0.55	≤ 1.60	≤ 0.025	≤ 0.015	_	≤ 0.44
weldability type	AR360WA	≦ 0.19	≥ 0.55	≥ 1.00	≥ 0.025	≥ 0.015	_	≥ 0.44

- % 1 Ceq=C+Mn/6+ (Cu+Ni) /15+ (Cr+Mo+V) /5
- % 2 In addition elements may be used.

1

In response to users' requirement, we categorize our products by formability and by the following three properties, depending on application.

Typical properties/ ①Standard type (K-TEN AR400A)

OHardness uniformity in thickness direction is obtained by special heat treatment.

Chemical composition & Mechanical properties

Thickness			Chemical	composition	(mass%)			Brinell hardness (HBW)
(mm)	С	Si	Mn	Р	S	Elements	Ceq	Surface
20	0.14	0.36	1.18	0.006	0.001	Cr and others	0.44	423
50	0.15	0.35	1.20	0.005	0.001	Cr and others	0.61	406
Spec.	≦0.18	≦0.55	≦1.60	≦0.025	≦0.015	※ 1	≦0.64	360~440

^{* 1} In addition elements may be used.

Y Typical properties/ **2Low temp. toughness type (K-TEN AR400LT)**

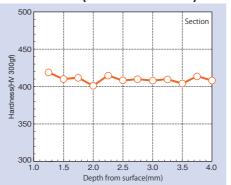
○Toughness at -40°C are ensured by optimal chemical composition and more advanced special heat treatment. ○Hardness uniformity in thickness direction is also obtained.

Chemical composition

Thickness	Chemical composition (mass%)									
(mm)	С	Si	Mn	Р	S	Elements	Pсм ^{ж1}	Ceq		
20	0.14	0.36	1.18	0.006	0.001	Cr and others	0.25	0.43		
50	0.15	0.36	1.20	0.005	0.001	Cr and others	0.27	0.61		
Spec.	≦0.18	0.10~0.70	≦1.50	≦0.020	≦0.010	% 2	_	≦0.64		

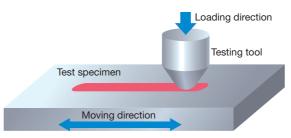
^{* 1} Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/15+5B

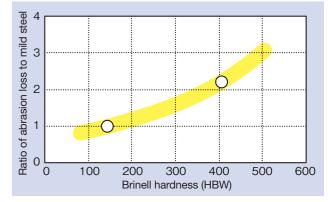
Mechanical properties


Thick	Thick Brinell hardness (HBW) Impact test				Tensile test (Reference test)					
ness (mm)	Surface	t/2 (Reference)	Test position	Test direction	vE-40 (J) Ave	1031		YP (MPa)	TS (MPa)	EL (%)
12	404	402			(41) Reference	E. II	- C	1040	1310	16
16	403	384			50	Full thickness		1020	1312	18
20	404	383	t/4	С	50			1023	1294	22
30	426	404	1/4		55			951	1336	16
40	423	409			60	1/4		1018	1315	17
50	421	391			57			967	1287	17
Spec.	360	- 440	t/4	С	≧27	_	_	_	_	_

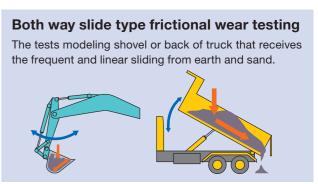
Bending properties

Thick Bend test (Reference test) n=2									
	ness	TP Width	Test	Test	Bend	Inside radius R ^{∗1}			
	(mm)	(mm)	position	direction	angle(°)	1t	2t	3t	
	20	120	Full thickness	L	180	×	0	0	


%1 t: Thickness of test specimen


Typical data of hardness distribution near surface (Thickness:20mm)

Typical properties/ 2 Low temp. toughness type (K-TEN AR400LT)


○The results of tests evaluating the abrasion property (Both way slide type frictional wear testing) show that the abrasion property is improved 2 times higher than that of general steel (SS400).

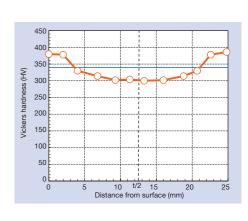
Test condition Testing tools : Alumina $(\phi 10 \text{mm})$ Load : 70N Strokes : 20mm

Sliding speed : 150mm/s
Test time : 30min
Test Number : N3

Typical properties/ ③ Excellent weldability type (K-TEN AR360WA)

OBy restricting alloy contents,we can make abrasion-resistant steel weld as easily as 50kg-class tensile strength steel,while maintaining the surface hardness.

Non-uniform hardness in thickness direction is a characteristic of this type.


Chemical composition (mass%)

	С	Si	Mn	Р	S	Рсм	Ceq
Example	0.16	0.33	1.36	0.017	0.005	0.24	0.41
Spec.	≦0.19	≦0.55	≦1.60	≦0.025	≦0.015	_	≦0.44

Mechanical properties

Thick	Brinell hard	ness (HBW)	Tensile test (Reference test)**1					
ness (mm)	Surface	t/2 (Reference)	Test position	Test direction	TS (MPa)	EL (%)		
25	366	300	Full thickness	С	1087	25		
Spec.	340 - 380		_	_	_	_		

%1 JIS Z2241 No.5 Tension test specimens (G.L.=50mm, W=25mm)

^{※ 2} In addition elements may be used.

Welding method/Welding consumables

1. Welding method

SMAW or MAG are mainly applied. For SMAW, low-hydrogen type electrodes are recommended in consideration of crack resistance because of its high strength and hardness.

2. Welding consumables

(Welding between abrasion resistance steel)

There are two ways to select welding consumables depending on the properties required for the welding metal.

1) Focus on the weldability:

Choose from the following welding consumables for 400-780MPa class high tensile strength steel.

Recommended welding consumables

CI	assific	ation	Pre	400MP	400MPa class		490MPa class		a class	690MP	a class	780MP	a class
Ci	assilic	alion	-heating	SMAW	GMAW	SMAW	GMAW	SMAW	GMAW	SMAW	GMAW	SMAW	GMAW
	indard ype	New Convent ional	≧100°C ≧150°C	LB-47 LB-47A	MG-50 SE-50T MG-S50	LB-52 LB-M52	MG-50 SE-50T MG-S50	LB-62 LB-62UL	MG-60 MG-S63B	LB-106	MG-70 MG-S70	LB-116 LB-80UL	MG-80 MG-S80
	Low ter		50 - 150℃	LB-52NS	MG- S50LT	LB-52NS	MG- S50LT	LB-62L	_	LB-Y75	_	LB-88LT	MG-S88A
	Excello veldab tyoe	oility	_	LB-47 LB-47A	MG-50 SE-50T MG-S50	LB-52 LB-M52	MG-50 SE-50T MG-S50	LB-62 LB-62UL	MG-60 MG-S63B	LB-106	MG-70 MG-S70	LB-116 LB-80UL	MG-80 MG-S80

2) Focus on the abrasion resistance of weld metal:

Please contact Kobe steel for further information.

(Welding between abrasion-resistant steel and general steel (ex. SS400))

Generally, welding consumables suitable for the base metal with lower strength and more strict welding procedure regarding cold cracking resistance should be applied.

For example, in the case of welding with SS400, low-hydrogen type electrodes are applied considering the weldability of the abrasion-resistant steel.

3. Pre-heating

Pre-heating is needed except for thin steel plate or small restraint case.

Pre-heating over 200°C cannot be applied due to decrease of hardness and toughness.

Caution/Cutting

1. Shear cutting

- Hardening and embrittlement occur by plastic deformation in shear area.
- There are many irregularities on fracture surface, as well as burrs at the bottom of the fracture surface.
- When bending sheared steel having high hardness or tested with small bending radius ratio (r/t), please make sure that the corner of the fracture surface is deburred and rounded with a grinder.

2. Gas cutting

- Due to rapid heating and cooling in gas cut area, residual stress and strain deformation is generated by expansion and contraction, and at the same time, hardening occurs Heat affected zone is 3-4mm wide on the surface closer to the torch, while 1-2mm wide on the opposite surface. Degree of hardening is affected by cutting condition, plate chemical composition (especially Carbon equivalent) and thickness.
- · Grinding corner of cut surface is needed to prevent cracks during bending.
- When steel with high carbon equivalent and heavy thickness is cut under the condition of low room temperature, preheating or post-heating is needed to prevent micro-cracks on the cut surface.

1. Cold bending

- · Average bending strain on outside surface is calcualted by following equation.
- $\varepsilon t = 1/(1+2r/t) \times 100 = t/2r \times 100(\%)$ (t:thickness, r:bending radius)
- This shows that bending cracks are easily generated with increasing thickness and decreasing bending radius.
- Bending cracks are affected by plate strength, bending direction, bending angle, plate width, end surface condition and surface condition.

2. Hot bending

Do not apply hot forming to the abrasion-resistant steel, because it was specially heat treated.

Besides new types of steel, we also sell conventional products.

Please contact Kobe steel for further information.

Conventional lineup

Conventional Classification	Code	Brinell hardness (HBW)	Further responses (mm)
	K-TEN AR320C	320 - 360	6≦t≦75
Carbon steel type	K-TEN AR360C	360 - 400	6≦t≦75
Carbon steel type	K-TEN AR400C	400 - 440	6≦t≦60
	K-TEN AR500C	470 - 530	6 ≦ t ≦ 50
	K-TEN AR320	300 - 340	6≦t≦65
Alloy steel type	K-TEN AR340	320 - 360	6≦t≦65
Alloy steel type	K-TEN AR360	340 - 380	6≦t≦65
	K-TEN AR400	380 - 420	6≦t≦50
Excellent weldability type	K-TEN AR320W	320 - 360	6≦t≦50
Excellent weldability type	K-TEN AR340W	340 - 380	6≦t≦50

5