SUBJECTION OCTOBER 2002 Vol.5 (No.4)

Cobeleo Advantages In the Are

United Welding and Kobelco take a leading role in Flux-Cored Welding Wires in Saudi Arabia

In May 2002, United Welding & Supplies Company Ltd., which is one of the Abdullah Hashim Group of Companies, arranged a technical welding seminar in 3 major cities of Saudi Arabia — Jeddah, Riyadh, and Dammam — for their customers in conjunction with their partners Kobe Steel. Ltd., Japan and Thai-Kobe Welding Co., Ltd., Thailand of the Kobelco Welding Group. A record number of participants turned up from many different industries including desalination plants, chemicals and petrochemicals plants, oil and gas pipeline contractors, steel fabricators. Government institutions such as the Department of Electricity and private sector companies, such as Aramco were also on hand.

Mr. Zaki Koura the Marketing Manager of United Welding & Supplies briefly informed the audience about the activities of the Abdullah Hashim Group of Companies that include manufacturing and distribution of industrial and medical gases, and distribution and stocking of welding consumables and related industrial products.

Mr. Zaki Z Koura, Marketing Manager of United Welding & Supplies, presenting the activities of Abdulla Hashim Group of Companies

Mr. Yasunori Nakai, Assistant Manager, International Operations Department, Kobe Steel, made an appreciation speech, explaining briefly about Kobe Steel's activities and expressing their satisfaction with successful operations in the growing Saudi Arabian market as well as 25 years of long association with United Welding & Supplies as their partner. Mr. Minoru Otsu, General Manager, Technical Department, Thai-Kobe Welding, also made a presentation that highlighted the main features of flux-cored wires such as their advantage over conventional coated electrodes and solid wires. The topic of the seminar was general guidance on flux-cored welding wires, with particular reference to Kobelco brand DW-100). The seminar, which covered all the technical aspects of flux-cored welding wires and their applications, were welcomed by all the participants.

Participants from various industries, listening to the technical presentation in the welding seminar

Most of the attendees particularly showed a great interest in MX-200 (AWS A5.20 E70T-1), a metal-type flux-cored wire that offers exceptionally good performance with high welding speed, excellent penetration, glossy smooth bead appearance, very little spatter and excellent fusion at the toe of fillet weld providing regular leg lengths at a wide range of welding parameters. Kobelco's technology for decreasing welding fumes and spatter also impressed the audience. Kobelco's Cr-Mo and stainless steel flux-cored wires attracted many participants, too. The seminar was a great success. The participants made good use of the Q&A session that was provided after the seminar.

Kobelco's complete range of flux-cored wires together with matching coated electrodes — is especially useful at this time when there are many construction projects in Saudi Arabia. For example, Hidada Ltd., a large fabrication workshop located in Jeddah, has been a major user of DW-100, reportedly using it in completing major Aramco projects, including the Rastanura refinery, which is the biggest refinery and oilfield in Saudi Arabia. Hidada Ltd., which has also completed the structural steel jobs for the Hardh sweet gas extraction project and crane girders for Hadeed, is very much impressed with the results of DW-100 because of much less spatter and the sufficient quality even in out-of-position welding without changing the position of work piece, which certainly saved time for them. Two other major companies that have been patronizing DW-100 for many years are Zamil Steel in Dammam and Butler in Jeddah, who are both involved in manufacturing of steel buildings. Both companies are satisfied with its convenient self-peeling slag removal and glossy bead appearance that contribute to saving time and labor for postweld cleaning.

The reporter, Mr. Azhar Shafi, Product Manager, United Welding & Supplies Co., Ltd.

Message from the Editor

Dear Readers:

This summer, many countries were suffered from terrible deluges, especially in Eastern Europe and China. I sincerely hope these countries attacked by such record floods recover as soon as possible. Modern technologies provide us with a lot of benefits and convenience, but they can also have a destructive impact on the environment. Global warming is one example of a bad side effect of our modern world. Recognizing the risks of modern technology, KOBELCO is developing innovative welding products that minimize environmental impact taking into account ecological factors that help sustain the earth. We will introduce such advanced products to our customers as soon as we have successfully developed them.

Meanwhile I visited Angkor Vat. a World Heritage Site, in Cambodia this summer. It seemed to me a very beautiful ancient architecture. I hope all of our Human Heritage should be preserved as a proof of the sustainable world as long as possible for the generations that succeed us.

Masakazu Tojo Editorial Chairman

Contents
User Reportage
■ United Welding & Supplies keeps successful operations in the growing Saudi market 1
Message from the Editor
Environment friendly filler metals: A Kobelco's key technology for the future
Technical Report
■ Kobelco covers a wide range of Cr-Mo welding consumables
The ABC's of Arc Welding
■ Preheating and Postheating: the Purposes and Procedures
Kobelco Group News
■ KWK Flux-Cored Wires Growing with the World-Top Korean Shipbuilders
Feature Articles
■ New KOBELCO WELDING TODAY — for the next 5-year advancing
Editorial Postscript

Dear KOBELCO WELDING TODA Y readers throughout the world: I am an assistant manager in charge of the ASEAN, Oceania and Middle East markets. Since I was transferred back to Japan from Houston, U.S., three and a half years have passed swiftly. As you may know, some of the important issues in living in a foreign country are adjusting to the life style of the regional community and becoming acquainted with good friends. The people I personally met in the U.S. are still good friends to me and also excellent business partners and customers. Since then, I have enjoyed a lot of opportunities to see many people in many places around the world. The joy derived from knowing so many people has become the backbone of my career, and has led me to return the favor and satisfy them and their customers in the welding consumables business. I would like to take this opportunity to express my gratitude for all the help offered to me. I will come anytime anywhere to help ensure that KOBELCO products are highly valued throughout the world in terms of quality and quantity and I believe KOBELCO could be helpful for the customers all over the world.

Yasunori "ANTZ" Nakai, Asst. Manager International Operations Dept.

Preface

General Manager

Welding Company Kobe Steel, Ltd.

International

Operations Department Essential Factors in Selecting Heat-Resistant Low Alloy Filler Metals for High-Temperature, High-Pressure Services in the Power Generation, Oil Refining, and Petrochemical Industries

Heat-Resistant Low Alloy Filler Metals Span Wide

Choosing an appropriate filler metal suitable for heat-resistant low alloy steels ranging from low Mo types such as 0.5Mo steel to high Cr types such as 9Cr-1Mo-V-Nb steel can be confusing. These low alloy steels are used for high-temperature, high-pressure equipment for the power generation, oil refining, petrochemical industries. Steam boilers, reactor vessels, heat exchangers, and process pipes are typical equipment for heat-resistant low alloy steel. As would be expected with such a wide scope of applications, numerous filler metals are available. Table 1 serves as a quick selection guide to the filler metals for various types of heat-resistant low alloy steels.

How to Select Correct Filler Metals

To select the correct filler metal for welding a particular material (e.g., A335 Gr. P11 pipe), you may follow this procedure.

- (1) Confirm nominal amounts of Cr and Mo: 1.25Cr-0.5Mo type as per ASTM A335
- (2) Confirm the minimum tensile strength: 415 MPa as per ASTM A335
- (3) Confirm candidates of filler metals: CMA-96, CMA-96MB, CMB-93, CMB-95, and CMB-98 for SMAW, and TGS-1CM and TGS-1CML for GTAW as indicated in Table 1.

 Table 1. A selection guide to filler metals for heat-resistant low alloy steels

	ASTM (ASME)		KOBELCO filler metal				
Steel type	Plate	Pipe / Tube	SMAW	FCAW	GMAW	GTAW	SAW
Mn-Mo Mn-Mo-Ni	A302 Gr. B,C,D A533 Type A,B,C,D	_	BL-96 BL-106	_	MGS-56 MGS-63S	TGS-56	PF-200/US-56B PF-200/US-63S
0.5Mo	A204 Gr. A,B,C	A209 Gr. T1 A335 Gr. P1	CMA-76	_	MGS-M MG-M	TGS-M	MF-38/US-40
0.5Cr-0.5Mo	A387 Gr. 2 Cl. 1,2	A213 Gr. T2 A335 Gr. P2	CMB-83 CMB-86	_	MG-CM	TGS-CM	—
1Cr-0.5Mo 1.25Cr-0.5Mo	A387 Gr. 12 Cl. 1,2 A387 Gr. 11 Cl. 1,2	A213 Gr. T11,12 A335 Gr. P11,12	CMA-96 CMA-96MB CMB-93 CMB-95 CMB-98	DW-81B2	MGS-1CM MG-1CM	TGS-1CM TGS-1CML	PF-200/US-511N
2.25Cr-1Mo	A387 Gr. 22 Cl. 1,2 A542 Type B Cl. 4	A213 Gr. T22 A335 Gr. P22	CMA-106 CMA-106N CMB-105 CMB-108	DW-91B3	MGS-2CM MGS-2CMS MG-2CM	TGS-2CM TGS-2CML	PF-200/US-521S
2.25Cr-1Mo-V	A542 Type D,E Cl. 4a A832 Gr. 22V	—	CMA-106H	—	—	TGS-2CMH	PF-500/US-521H
3Cr-1Mo-V	A542 Type C Cl. 4a A832 Gr. 21V	—	CM-3H	—	—	TGS-3CMH	PF-500/US-531H
5Cr-0.5Mo	A387Gr.5 Cl.1,2	A213 Gr.T5 A335 Gr.P5	CM-5	—	MGS-5CM	TGS-5CM	PF-200S/US-502
9Cr-1Mo	A387 Gr. 9 Cl. 1.2	A213 Gr. T9 A335 Gr. P9	CM-9	—	MGS-9CM	TGS-9CM	PF-200S/US-505
9Cr-1Mo-V-Nb	A387 Gr. 91 Cl. 2	A213 Gr. T91 A335 Gr. P91	CM-9Cb CM-96B9	—	MGS-9Cb	TGS-9Cb TGS-90B9	PF-200S/US-9Cb
Low C 2.25Cr-W-V-Nb	—	(SA213 Gr. T23) (SA335 Gr. P23)	CM-2CW	—	—	TGS-2CW	—

(4) Confirm the AWS classification where required: You can find out the AWS classification of filler metals as shown in Table 2 by referring to the Kobelco Welding Handbook.

Because the combination of second and third digits (80 or 70) of the AWS classifications designates the minimum tensile strength of 80 or 70 ksi (550 or 480 MPa), you will know which filler metals have sufficient tensile strength over the minimum tensile strength of the pertinent pipe, in the testing conditions specified by the AWS standard (A5.5 and A5.18).

However, postweld heat treatment (PWHT) employed in welding fabrication may be stricter (higher temperature and longer soaking time) than the AWS standard. In this case, the minimum tensile strength guaranteed by Kobe Steel may be lower than that specified by AWS. Please contact the nearest Kobelco office or sales representative to confirm the permissible PWHT conditions (temperature and time) to ensure the minimum tensile strength of the pertinent base metal (Or refer to Kobelco Welding Today, Vol. 4, No. 4, October 2001 for the PWHT dependence on the mechanical properties of 1.25Cr-0.5Mo weld metals).

(5) Confirm applications for and characteristics of filler metals: By referring to the Kobelco Welding Handbook, You may notice that recommended applications for and key characteristics of individual filler metals are not necessarily the same for the same AWS-class filler metals as summarized in Table 2.

Table 2.	Applications	for a	nd key	characteristics	of	filler
metals fo	or 1.25Cr-0.5M	o steel	pipes			

Filler metal	AWS classification	Applications and key characteristic
CMA-96	E8016-B2	■General application
CMA-96MB	E8016-B2	■Lower hardness ■Higher impact value
CMB-93	E8013-G	■Sheet metal ■Surface-dressing
CMB-95	E7015-B2L	■Low carbon ■DC power source only
CMB-98	E8018-B2	Higher deposition rate
TGS-1CM	ER80S-G	■General application
TGS-1CML	ER80S-G	■Low carbon

When no specific requirement is imposed, you may choose CMA-96 for SMAW and TGS-1CM for GTAW for welding the aforementioned pipe. A typical application for CMB-93 (high-titania type electrode) is to dress fillet welds made by using low hydrogen type electrodes to make the fillet toe smooth for better fatigue strength — Fig. 1.

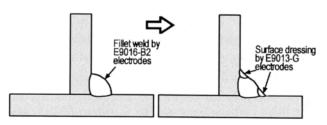


Figure 1. Surface dressing with E9013-G electrodes on an E9016-B2 fillet weld to improve fatigue strength

As for 1Cr-0.5Mo steel, the same matching filler metal for 1.25Cr-0.5Mo steel can be used in general because the required Cr ranges of both steels overlap: 0.85-1.25%Cr for 1Cr-0.5Mo steel; 1.00-1.50%Cr for 1.25Cr-0.5Mo steel, and filler metal standards (e.g., AWS) specify no specific classification for 1Cr-0.5Mo formula.

However, the tensile strengths of both types of plates specify different requirements as shown in Table 3. That is, the nominal tensile strength of 1Cr-0.5Mo plates can be lower than that of 1.25Cr-0.5Mo plates even when the steel class is the same. On the other hand, the matching filler metal should have generally the same or a little higher tensile strength relative to the base metal from the standpoint of the strength balance of the weld joint. Therefore, where the nominal tensile strength (650 MPa/room temp./690°Cx1h) of CMA-96 is deemed excessive relative to 1Cr-0.5Mo steel, CMA-96MB is recommended because its nominal tensile strength (590 MPa/room temp./690°Cx1h) is lower. For the same reason, TGS-1CML, rather than TGS-1CM, is more suitable for 1Cr-0.5Mo steel in terms of the strength balance.

Table 3. A comparison of tensile strength requirements of1Cr-0.5Mo and 1.25Cr-0.5Mo steel plates

Steel type	Steel grade	Tensile stre	ength (MPa)
	otool grado	Class 1	Class 2
1Cr-0.5Mo	A387 Gr. 12	380-550	450-585
1.25Cr-0.5Mo	A387 Gr. 11	415-585	515-690

Where the gas metal arc welding process (GMAW) is used, there are two choices for welding 0.5Mo, 1.25Cr-0.5Mo and 2.25Cr-1Mo steel depending on the type of shielding gas: MG-XXX wires use CO₂, MGS-XXX wires use Ar-CO₂ admixture (e.g., 80%Ar-20%CO₂).

 CO_2 is more economical but causes much more spatter than the other. In contrast, Ar-CO₂ admixture causes low spatter but is more expensive than the other. In addition, the type of shielding gas affects the quality of the weld metal. Figure 2 shows the effect of shielding gas composition on Charpy impact absorbed energy of weld metals. It is obvious in this figure that the impact energy decreases as the percentage of CO_2 in the shielding gas increases. This is because, as shown in Fig. 3, the chemical composition of weld metal is affected by the decomposition of CO_2 ($CO_2 \rightarrow CO +$ O) at high temperatures in the arc atmosphere. This is why the GMAW filler metal should be selected, taking into account the type of shielding gas to be used and weld quality requirements.

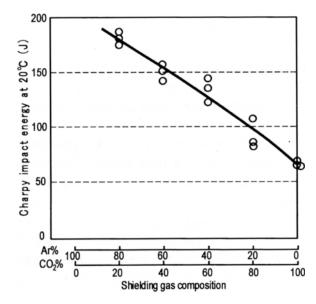


Figure 2. The effect of shielding gas composition on Charpy impact absorbed energy of 1.25Cr-0.5Mo weld metals (PWHT: 690°C x 1hr)

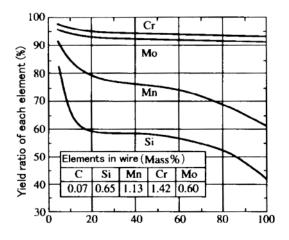


Figure 3. Yield ratios of chemical elements of a 1.25Cr-0.5Mo weld metal as a function of $CO_2\%$ in an Ar- CO_2 mixture

In contrast to GMAW with solid wires, flux-cored arc-welding (FCAW) with Kobelco Cr-Mo flux-cored wires (FCW), DW-81B2 (AWS A 5.29 E81T1-B2) for 1.25Cr-0.5Mo steel and DW-91B3 (AWS A5.29 E91T1-B3) for 2.25Cr-1Mo steel, releases you from the annovances of selecting an appropriate shield gas because both wires use either 75-80%Ar/bal.CO₂ admixture or CO₂. These FCWs offer spray transfer, low spatter loss, flat to slightly convex bead profile, and a moderate volume of slag that completely covers the weld bead and exhibits self-peeling removal, in out-of-position welding. The mechanical properties and microstructure of the weld metal after PWHT are consistent. The superior usability of DW-81B2 and DW-91B3 can facilitate smoother bead appearance on pipe branches and nozzle-to-vessel joints where the welding torch must be manipulated three-dimensionally to control the molten pool.

Joining Dissimilar Metals is Unavoidable in Welding High-Temperature High-Pressure Equipment

Almost all machinery, vessels and process pipes are fabricated using a variety of materials — thus dissimilar-metal joints are a necessity when efficient performance with competitive materials at lower fabrication costs are the goals. For instance, power generation boilers (Fig. 4) are fabricated by using different types of steels depending on, primarily, the service temperature as shown in Table 4, although other factors such as steam pressure and corrosives should also be taken into account.

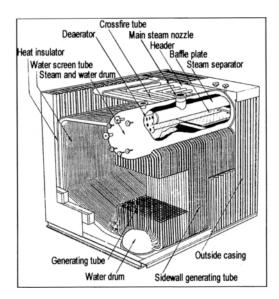


Figure 4. Schematic view of a water tube boiler fabricated with sophisticated structure components of various types of steels (Source: K. Nagumo, Basic Knowledge of Boiler, Ohmsha, 2002)

Table 4. Service temperature ranges for fire power boiler component materials

Steel type	Typical JIS (Karyoku) grade	Typical ASTM (ASME) grade	Service temperature (°C) ⁽¹⁾
carbon steel	STPT	A106	350-400
0.5Mo	STPA 12	A335 Gr. P1	400-475
1Cr-0.5Mo	STPA 22	A335 Gr. P12	450-550
1.25Cr-0.5Mo	STPA 23	A335 Gr. P11	500-550
2.25CMMO	STPA 24	A335 Gr. P22	520-600
LowC2.25Cr- W-V-Nb	(KA- STPA 24J1)	(SA335 Gr. P23)	525-600
5Cr-0.5Mo	STPA 25	A335 Gr. P5	550-600
9Cr-1Mo	STPA 26	A335 Gr. P9	600-650
9Cr-1Mo-V-Nb	(KA- STPA 28)	A335 Gr. P91	525-600
stainless steel	SUS 304HTP	A312 Gr. 304H	650-850

Note (1) Data source: Karyoku Genshiryoku Hatsuden (Fire and Nuclear Power Generation), Vol. 51, No. 1, January 2000

As mentioned above, the structural components of a power generation boiler use several types of steels; therefore, joining dissimilar steels is unavoidable at the interface of different service condition areas. When joining carbon steels and Cr-Mo steels, or when joining dissimilar Cr-Mo steels, a filler metal with a composition similar to the lower-alloy steel or to an intermediate composition is commonly used for butt joints. This is because, the weld metal need not be stronger or more resistant to creep or corrosion than the lower alloy base metal in normal applications.

For instance, carbon steel can readily be joined to 2.25Cr-1Mo steel by using either a carbon steel or 1.25Cr-0.5Mo steel filler metal; however, carbon steel tiller metals are usually selected except where carbon migration (the diffusion of carbon from lower-Cr metal to higher-Cr metal during PWHT and service at high be decreased. temperatures) must Likewise. 2.25Cr-1Mo steel can be joined to 9Cr-1Mo-V-Nb steel by using a 2.25Cr-1Mo filler metal. In contrast, Cr-Mo steel and austenitic stainless steel are joined with a high Cr-Ni stainless (e.g., E309) or, where carbon migration and thermal stress are important factors, nickel alloy (e.g., ENiCrFe-1) filler metal. For a quick guide to recommended Kobelco brands for joining dissimilar metals, refer to Table 5.

Tips for Pipe Welding

Process piping (Fig. 5) conveys fluids such as steam and hydrocarbon between the boilers, reactors, heat exchangers and distillation towers of a plant. It also connects one process unit with another. Such process piping is subject to elevated temperature and high pressure.

Table 5. A quick guide to proper filler metals for welding dissimilar-metal butt joints for general applications (1)(2)

Base metal	Mild steel	0.5Mo	1.25Cr-0.5Mo	2.25Cr-1Mo	5Cr-0.5Mo	9Cr-1Mo 9Cr-1Mo-V-Nb		
Type 304 stainless steel		, ,	, NC-39L (E309L), TGS liCrFe-3), NIC-70A (EN	· /·	· · ·			
9Cr-1Mo 9Cr-1Mo-V-Nb	LB-52 (E7016) TGS-50 (ER70S-G)	CMA-76 (E7016-A1) TGS-M (ER80S-G)	CMA-96 (E8016-B2) TGS-1CM (ER80S-G)	CMA-106 (E9016-B3) TGS-2CM (ER90S-G)	CM-5 (E8016-B6) TGS-5CM (ER80S-B6)			
5Cr-0.5Mo	LB-52 (E7016) TGS-50 (ER70S-G)	CMA-76 (E7016-A1) TGS-M (ER80S-G)	CMA-96 (E8016-B2) TGS-1CM (ER80S-G)	CMA-106 (E9016-B3) TGS-2CM (ER90S-G)		-		
2.25Cr-1Mo	LB-52 (E7016) TGS-50 (ER70S-G)	CMA-76 (E7016-A1) TGS-M (ER80S-G)	CMA-96 (E8016-B2) TGS-1CM (ER80S-G)	meta	Note: (1) This table guides to recommended filler metals matching the lower-alloy steels in various dissimilar metal joints, excepting for Type 304 steel. Other types of filler metals may be needed where a specific requirement is imposed.			
1.25Cr-0.5Mo	LB-52 (E7016) TGS-50 (ER70S-G)	CMA-76 (E7016-A1) TGS-M (ER80S-G)		for ⁻ meta				
0.5Mo	LB-52 (E7016) TGS-50 (ER70S-G)	Note: (2)		stweld heat treatme fficient to the higher⊣	ment for dissimilar Cr-Mo			

steels should be sufficient to the higher-alloy steel; however, the PWHT temperature should be lower to avoid damage to the lower-alloy steel and minimize the carbon migration. Type 304 stainless steel should not be preheated or postweld heat-treated to avoid sensitization.

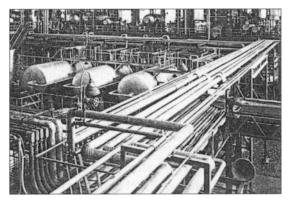


Figure 5. Cr-Mo filler metals are indispensable to construct the process piping of refineries and chemical plants

In welding pipes, it is essential to control the quality of the root pass weld in order to ensure the quality of the entire pipe weld. More importantly, correct groove preparation is a key technique to assure the soundness of the root pass weld. Table 6 illustrates the standard, recommended targets and tolerances of groove preparation and acceptable misalignment in particular welding procedures.

Table 6. Proper groove preparation and recommendeddimension control to ensure the root pass quality

	× Kg		← 19 →	<10 deg. +2.5, -2.5 → → ↓ G → ↓ G → ↓	- F
		Bevel angle Ø(deg)	Root face F(mm)	Root gap ⁽²⁾ G (mm)	Misalig- nment (mm)
ANSI B3	1.3 ⁽¹⁾	37.5 +2.5 -2.5	1.6 +0.8 0.8	—	—
Upward SMAW	Target	Per ANSI	Per ANSI	2.0-3.2 (2.0-2.6)	1.6 max
with low hydrogen electrodes	Toler- ance	Per ANSI	Per ANSI	1.6-3.6	2.0 max
Upward	Target	Per ANSI	Per ANSI	2.0-3.2 (2.0-2.6)	1.2 (0.8) max
ĠTAW	Toler- ance	Per ANSI	Per ANSI	1.6-3.6	1.6 max

 Note (1) ANSI B31.3: American National Standard Institute, Chemical Plant and Petroleum Refinery Piping
 (2) Targets in the parentheses are for thin tubes (t ≤ 7)

In GTAW, the need for back shielding argon gas is an important factor because it affects the quality of the root pass weld and fabrication costs. 0.5Mo and 1.25Cr-0.5Mo filler metals can be used without back shielding except where the backside bead appearance has to be controlled strictly. 2.25Cr-1Mo or higher Cr filler metals need back shielding. Without back shielding, the root pass weld cannot properly be formed. Even if the appearance seems good, porosity may be formed inside the weld.

Even when the welding is perfectly conducted, the weld quality cannot finally be assured unless PWHT is appropriate because PWHT affects the mechanical properties of welds in addition to relieving residual stresses. Excessive PWHT may cause too low tensile strength and notch toughness to satisfy the requirements. In contrast, insufficient PWHT may result in too much hardness — thus too low ductility — and inadequate impact toughness. Table 7 shows PWHT temperature and holding time for Cr-Mo pipe welds, employed in construction of process piping.

Table 7. Postweld heat treatment temperature and holding time for Cr-Mo steel welds (Source: ANSI B31.3-90)

Steel type	Heating temperatures (°C)	Holding time (h)
0.5%Mo	593-718	1h for each 25.4 mm of plate thickness, but min. 1h
1.25%Cr-0.5%Mo	704-746	
2.25%Cr-1%Mo 5%Cr-0.5%Mo 9%Cr-1%Mo	704-760	1h for each 25.4 mm of plate thickness, but min. 2h

In the fabrication of spools of pipes, PWHT is usually carried out in a furnace, where the entire pipe work is placed inside. However, field pipe joints are frequently given a local heat treatment using, for instance, electric resistance heating tools suitable for pipe welds — Fig. 6. In local PWHT, temperature control is an essential factor to maintain the temperature gradient within the limits set by the relevant code. To assure this requirement, the temperature distribution is measured with thermocouples attached at the twelve, three and six o'clock positions of a weld.

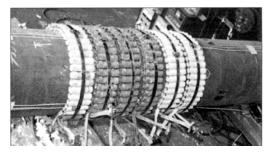


Figure 6. Preparation of local postweld heat treatment with electric resistance heating tools and thermocouples (Source: Jemix, Japan)

Preheating and Postheating: The Purposes and Procedures

Preheating can be defined as the application of heat to the base metal or substrate before welding. Gas torches, electric heaters, or infra-red radiant pane heaters can all be used to apply preheat, which decreases the weld cooling speed and thereby prevents cold cracking in welds. Figure 1 shows how an increase of preheating temperature affects the cooling rate of welds. For example, where heat input is constant (e.g., 20 kJ/cm), a 50-degree-C preheat results in an approximate cooling rate of 17°C/sec, while a preheat of 250°C decreases the cooling rates prevents the formation of brittle weld structures, and removes diffusible hydrogen, which in turn prevents the occurrence of cold cracking in welds.

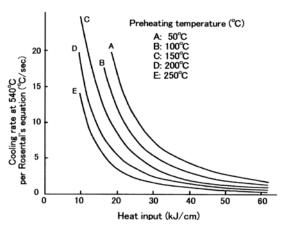


Figure 1. The effect of preheat on the cooling rate of welds as a function of heat input (Plate thickness: 19 mm)

Figure 2 shows the preheat temperature dependence on cold cracking in 780 MPa high tensile strength steel welds. As the preheat temperature increases the crack ratio decreases.

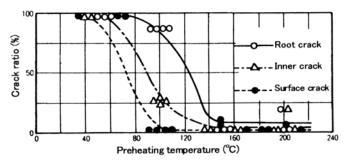


Figure 2. y-groove weld cracking test results of 780 MPa high tensile strength steel welds

Postheating can be defined as the application of heat to an assembly after welding. Postheating includes postweld heat treatment (PWHT), immediate postweld heating (IPWH), normalizing, quenching, and tempering (aging). The main purposes of these operations in welding fabrication are as follows:

- PWHT: relieves residual stresses
- IPWH: relieves diffusible hydrogen
- Normalizing: refines microstructures deformed by hot forming (e.g., applied on the end plate of vessels)
- Quenching: hardens welds by rapid cooling, using water, air, or mist (e.g., applied on surfaced shafts)
- Tempering (Aging): stabilizes microstructures after quenching or welding

Among these heating or heat treatments, PWHT and IPWH are the most common procedures used in welding. The others are used for limited applications in some welding fabrication fields. The purposes and procedures of PWHT are detailed in Kobelco Welding Today, Vol. 4, No. 2, April 2001. IPWH is usually carried out with gas torches, on welds right after welding is finished, while the weld still maintains the preheat temperature, by using comparatively lower temperatures and shorter heating times (250-350°C x 0.5-1h), prior to PWHT. IPWH decreases diffusible hydrogen to an adequate level (though higher than with PWHT as shown in Fig. 3) to prevent cold cracking.

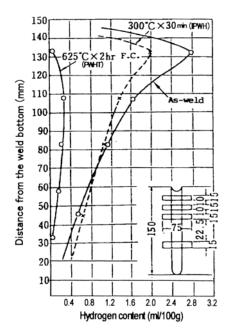


Figure 3. Effects of intermediate postweld heating and postweld heat treatment on removal of diffusible hydrogen from 2.25Cr-1Mo weld metals (Preheat and Interpass temperature: 200°C)

KOBELCO Group News

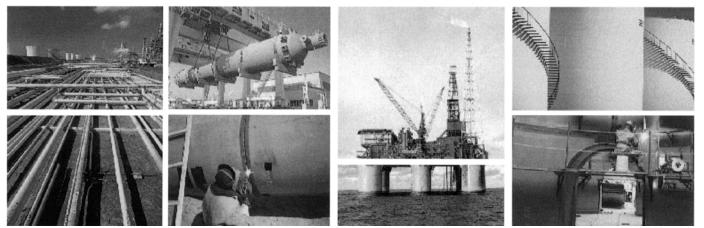
KWK Flux-Cored Wires Growing with the World-Top Korean Shipbuilders

KWK, started with a maximal production capacity of 600 metric tons a month 7 years ago, has grown to be a 1200-MT-capacity producer of flux-cored wires, supported by the Korean industries, particularly shipbuilders, in good times

Kobelco Welding of Korea Co., Ltd. (KWK) was set up in 1995 as the first Korean joint-venture with Kobe Steel, Ltd. The main operations of KWK are the production of flux-cored wires (FCW) for mild steel and 490-N/mm² class high tensile strength steel and the marketing of such products in the Korean and overseas markets.

KWK has assigned top priority to providing such top-quality products so that KWK can hold superiority over its competitors and can respond to the needs of customers, including world-leading shipbuilders in Korea. In addition, KWK has been contributing to the development of its customers by providing timely technical services and by delivering products swiftly.

KWK, we believe, has gained the confidence of customers through the above-mentioned business style. As the Korean economy has been growing well, the sales volume and share for KWK products in the Korean FCW market have been steadily increasing. KWK increased its supply capacity to 900 tons per month in spring 2001 but was required to supply even more to satisfy customer demands for top-quality products in terms of volume. Therefore, KWK started a facility beef-up project to increase its capacity to 1200 tons per month in spring 2002 and celebrated its completion on June 28.



KWK's executives at the prayer for the completion of the new production equipment, on 28 June 2002: from the left, Kobashi, retiring President, Kim, Chairman, Koh, McQan, Director, Takamura, vice-GM, IOD, KSL, Yamamoto, succeeding President (Top); KWK's all employees, listening to a ceremony speech (Bottom)

Despite harsh realities such as the recent rapid rise of the won against the dollar, KWK will continue to pursue much higher quality in order to ensure the highest level of customer satisfaction. KWK will also strive to grow further and help the customers develop by offering on-target technical services and product delivery.

> Reported by Sasakura, KWK

Feature Article

New KOBELCO WELDING TODAY... for the next 5-year advancing

Thank you for reading KOBELCO WELDING TODAY. Thanks to great favors granted by many readers, KOBELCO WELDING TODAY has marked its fifth anniversary. We will continue to improve the contents of this journal to provide readers with more attractive, useful articles as we move toward our tenth anniversary, in five years. The Technical Report, which has always been well-received, will mainly discuss how to select welding consumables appropriate for welding fabrication of a wide variety of structures. It will also include a new type of articles that will answer technical questions from readers. User Reportage will continue to introduce the users of KOBELCO product. We would especially like to increase participation and feedback from our readers. Your suggestions for article ideas or other improvements are always welcome. We are striving to improve KOBELCO WELDING TODAY to serve the needs of the readers. KOBELCO WELDING TODAY will measure up to your expectations.

KWT Editorial Staff

Editorial Postscript

The giveaway of KWT magazine files announced in the previous issue drew a great number of responses from earnest readers, and the number of entries exceeded the predetermined number. We sent the KWT magazine files to 500 lucky readers chosen by lottery. We will be very happy, if you would like it. If you received a file damaged due to unexpected handling during transportation, do not hesitate to contact us.

Publisher: The International Operations Dept., Welding Company, Kobe Steel, Ltd. Printer: Fukuda Printing Co., Ltd. Editor: KOBELCO WELDING TODAY Editorial Stuff URL: http://www.kobelco.co.jp E-MAIL: iod@melts.kobelco.co.jp

WELDING CONSUMABLE THE WORLDWIDE MANUFACTURER

GLOBAL MANUFACTURING AND SALES BASES

JAPAN :

KOBE STEEL, LTD.Welding Company International Operations Dept. 9-12, Kita-Shinagawa 5-chome, Shinagawa-ku, TOKYO, 141-8688 JAPAN Tel. (81)3 5739-6331 Fax.(81)3 5739-6960

EUROPE : **KOBELCO WELDING OF EUROPE B.V.** Eisterweg 8, 6422 PN, Heerlen, The Netherlands Tel. (31)45-547-1111 Fax. (31)45-547-1100

USA :

KOBELCO WELDING OF AMERICA INC. HOUSTON HEAD OFFICE 4755 ALPINE, SUITE, 250, STAFFORD, TEXAS 77477 USA Tel.(1) 281 240-5600 Fax. (1) 281 240-5625 CHICAGO SALES OFFICE 543 W. Algonquin Rd., Suite 201 Arlington Heights, Illinois. 60005 Tel.(1) 847 439-8450 Fax.(1) 847 439-8455

(Theheles

IL DISCHARTSON

Allasaria

NYK ..

III. States

Wither Law Sec.

States:

Withstee.

A Real Produced in

KOREA : KOBE WELDING OF KOREA CO., LTD. 21-14, Palryong-Dong, Changwon, Kyongnam, Republic of Korea Tel.(82)55 292-6886 Fax.(82)55 292-7786

SINGAPORE : KOBE WELDING (SINGAPORE) PTE. LTD. 20, Pandan Avenue, Jurong, Singapore 609387, Republic of Singapore Tel.(65)2 68 27 11 Fax.(65)2 64 17 51

THAILAND :

17777

THAI-KOBE WELDING CO., LTD. 500, Soi1, Bangpoo Industrial Estate, Sukhumvit Road, Praeksa, Samutprakarn 10280, Thailand Tel.(66)2 324-05 88 91 Fax.(66)2 324-07 97

KOBE MIG WIRE (THAILAND) CO., LTD. 491, Soi 1, Bangpoo Industrial Estate, Sukhumvit Road, Praeksa Samutprakarn 10280, Thailand Tel.(66)2 324-05 88-91 Fax.(66)2 324-07 97

MALAYSIA : ST KOBE WELDING (MALAYSIA) SDN. BHD. Plot 502, Jalan Perusahaan Baru, Kawasan Perusahaan Prai, 13600 Prai, Malaysia Tel.(60)4-3905792 Fax.(60)4-3905827

INDONESIA : P.T. INTAN PERTIWI INDUSTRI (Technically-Collaborated Company) Jalan P Jayakarta 45, Block A/27, Jakarta 11110, Indonesia Tel.(62)21-639-2608 Fax.(62)21-649-6081

TECHNICAL SUPPORT QUICK DELIVERY