添付資料1:開発者・開発期間

1. 開発者

株式会社神戸製鋼所

住所:兵庫県神戸市中央区脇浜海岸通2丁目2番4号

代表取締役社長:川崎 博也

関西電力株式会社

住所:大阪市北区中之島3丁目6番16号

取締役社長:八木誠

東京電力株式会社

住所:東京都千代田区内幸町1丁目1番3号

代表執行役社長:廣瀬 直己

2. 開発期間

2012年7月~2014年3月

以 上

添付資料2:「HEM-3WAY」の概要

1. 外 観

写真1 超高効率ヒートバランスヒートポンプ「HEM-3WAY」の外観

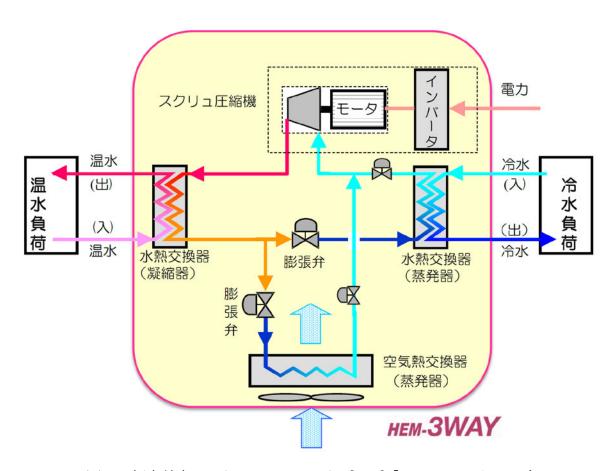
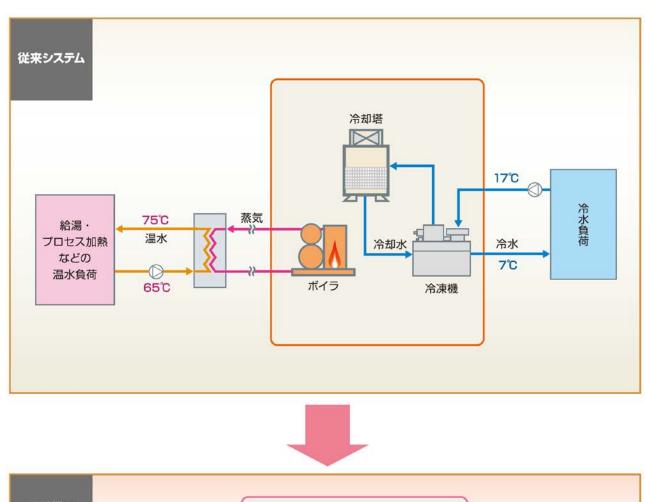



図1 超高効率ヒートバランスヒートポンプ「HEM-3WAY」イメージ

2. 導入イメージ

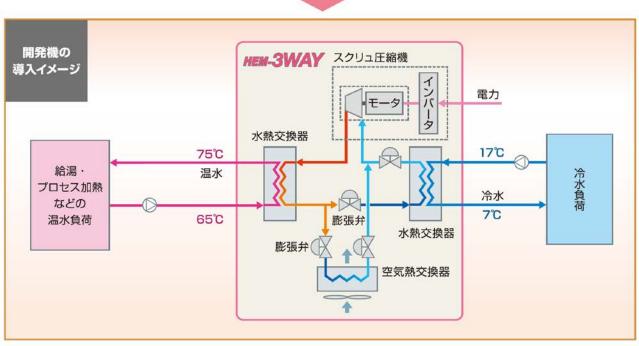


図2 超高効率ヒートバランスヒートポンプ「HEM-3WAY」の導入イメージ

3. 仕様

表1 超高効率ヒートバランスヒートポンプ「HEM-3WAY」の仕様

ユニット寸法		奥行き 2.79 m×幅 1.85 m×高さ 2.70 m		
質量		運搬時:3,010 kg(運転時:3,130 kg)		
冷媒		R134a と R245fa の混合冷媒		
圧 縮 機		インバータ駆動スクリュ式		
法定冷凍トン		9.2 法定冷凍トン (第二種製造届出)		
性(能1(完全熱回収運転条件)	温水入/出口 65/75℃、冷水入/出口 17/7℃		
	能力	加熱能力 150.0 kW、冷却能力 100.8 kW		
	消費電力	49. 2kW		
	総合 COP	5. 1		
性	能 2 (温熱専用運転条件)	温水入/出口 65/75℃、外気温度 17℃		
	能 力	加熱能力 155.2kW		
	消費電力	52. 6kW		
	加熱 COP ^¾	3. 0		
負荷変動自動追従機能		a) 完全熱回収運転 b) 温熱主体熱回収運転		
	只們久對日對足從成能	c) 温熱専用運転の3モード運転において連続容量制御		
消費電力抑制運転機能		①内蔵コントローラで消費電力上限値の設定が可能		
		②外部信号により消費電力抑制運転が可能		

※4 加熱 COP

加熱能力(kW)を運転時の消費電力(kW)で除した値。

4. 標準運転範囲

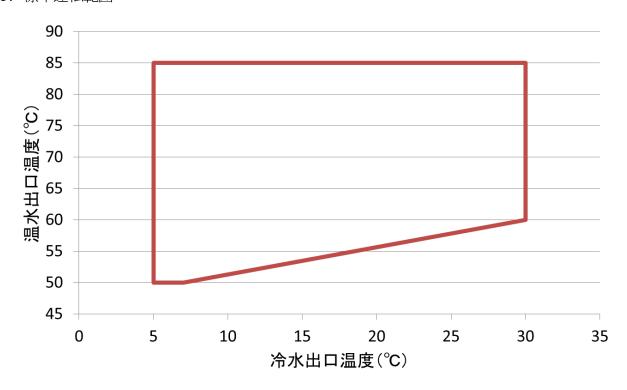


図3 超高効率ヒートバランスヒートポンプ「HEM-3WAY」の標準運転範囲

5. 開発のポイント

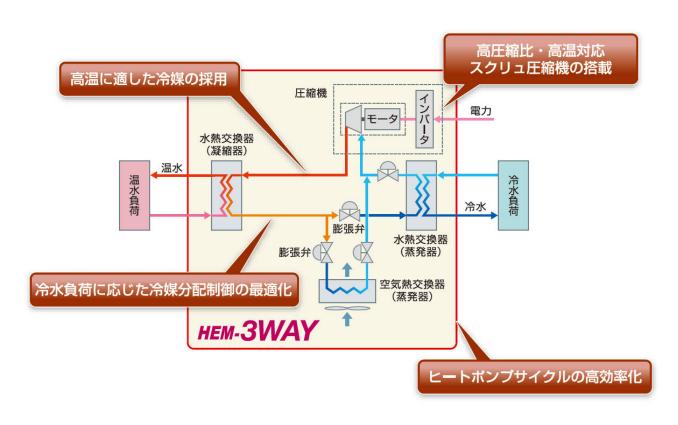


図4 超高効率ヒートバランスヒートポンプ「HEM-3WAY」の開発のポイント

6. 導入効果の試算例

表2 ランニングコスト

(単位:万円/年)

	東京地区	大阪地区	2地区平均
開発機 HEM-3WAY	301.0	287. 1	294. 1
従来システム (ガスボイラ+冷凍機)	730. 0	711. 7	720. 9
削 減 率	58.8%	59.7%	59. 2%

- 年間運転時間 2,856 時間(平日のみ 12 時間)。
- ・ 冬季に HEM-3WAY の能力を超える温水供給は、既設ボイラで補完。
- ・ 2地区それぞれの電気・ガス料金メニューを使用。

表3 エネルギー消費量

(単位:GJ/年)

	東京地区	大阪地区	2地区平均
開発機 HEM-3WAY	1, 615	1, 632	1, 624
従来システム (ガスボイラ+冷凍機)	4, 081	4, 079	4, 080
削 減 率	60.4%	60.0%	60.2%

- ・エネルギー消費量の換算には、電力は「エネルギーの使用の合理化に関する法律施行規則」 の記載値(9,970kJ/kWh) を、都市ガスは各地域の都市ガス会社の公表する一般ガス供給約 款の記載値をそれぞれ使用。
- J(ジュール) はエネルギーの大きさを表す単位で、1 G J(ギガジュール) は $10^9 J$ を意味する。 1 G J は約 26 J ットルの原油のもつエネルギーに相当。

表4 CO2排出量

(単位:t-CO₂/年)

	東京地区	大阪地区	2地区平均
開発機 HEM-3WAY	66.8	78. 1	72. 5
従来システム (ガスボイラ+冷凍機)	201. 0	205. 4	203. 2
削減率	66.8%	62.0%	64.3%

- ・ CO_2 排出量の換算には、電力は環境省の公表値を、都市ガスは各地域の都市ガス会社の公表値をそれぞれ使用。
- ・「 $t-CO_2$ 」とは、エネルギーの使用に伴う温室効果ガスの排出量を、二酸化炭素 (CO_2) の持つ温室効果に換算し、t(F))単位で表示した値。

以上